Proton translocation coupled to quinol oxidation in ox heart mitochondria.

نویسندگان

  • H G Lawford
  • P B Garland
چکیده

The suitability of ubiquinol(1) and duroquinol as pulse reductants for initiating respirationdriven proton translocation by aerobic ox heart mitochondria was investigated. At 25 degrees C the V(max.) for oxidation was close to 280nmol of quinol oxidized/min per mg of protein, and the K(m) values were 8mum for ubiquinol(1) and 28mum for duroquinol. Pulses of ubiquinol(1) and duroquinol were rapidly and completely oxidized by aerobic mitochondria with a simultaneous acidification of the suspending medium as detected with a glass electrode. The -->H(+)/2e(-) ratios (Mitchell, 1966) calculated from the observed extent of acidification and the amount of quinol added were 3.62 for ubiquinol(1) and 2.98 for duroquinol. These values are underestimates of the true value owing to proton back-flow across the membrane. An analogue computer model was used to correct the observed extent of respirationdriven acidification for proton back-flow. The corrected -->H(+)/2e(-) values were 4.01 for ubiquinol and 3.86 for duroquinol oxidation. Attempts to measure the rate of proton translocation with a pH-measuring system with a response time of 0.4s were not entirely satisfactory, owing to the relative slowness of the electrode response. Nevertheless the maximal rate of proton generation during ubiquinol(1) oxidation was about 1200ng-ions of H(+)/min per mg of mitochondrial protein. It is concluded, contrarily to Chance & Mela (1967), that mitochondria exhibit a proton-translocating ubiquinol oxidase activity with a -->H(+)/2e(-) ratio of 4.0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of the mechanism of proton translocation by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria: does the enzyme operate by a Q-cycle mechanism?

Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the membrane-bound electron transport chain in mitochondria. It conserves energy, from the reduction of ubiquinone by NADH, as a protonmotive force across the inner membrane, but the mechanism of energy transduction is not known. The structure of the hydrophilic arm of thermophilic complex I supports the idea that proton transloc...

متن کامل

Cytochrome bc1 complexes of microorganisms.

The cytochrome bc1 complex is the most widely occurring electron transfer complex capable of energy transduction. Cytochrome bc1 complexes are found in the plasma membranes of phylogenetically diverse photosynthetic and respiring bacteria, and in the inner mitochondrial membrane of all eucaryotic cells. In all of these species the bc1 complex transfers electrons from a low-potential quinol to a...

متن کامل

Stoichiometry of proton translocation coupled to substrate oxidation in plant mitochondria.

The proton translocation coupled to the electron flux from succinate, exogenous NADH, and NAD(+)-linked substrates (malate and isocitrate) to cytochrome c and to oxygen was studied in purified potato (Solanum tuberosum) mitochondria using oxygen and ferricyanide pulse techniques. In the presence of valinomycin plus K(+) (used as a charge compensating cation), optimum values of H(+)/2 e(-) were ...

متن کامل

Protonmotive pathways and mechanisms in the cytochrome bc1 complex.

The cytochrome bc(1) complex catalyzes electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which electron transfer is linked to proton translocation across the inner mitochondrial membrane. In the Q cycle mechanism proton translocation is the net result of topographically segregated reduction of quinone and reoxidation of quinol on opposite sides of the membr...

متن کامل

The mechanism of proton translocation by the cytochrome system of mitochondria. Characterization of proton-transfer reactions associated with oxidoreductions of terminal respiratory carriers.

A direct kinetic analysis is presented of rapid proton-releasing reactions at the outer or C-side of the membrane, in ox heart and rat liver mitochondria, associated with aerobic oxidation of reduced terminal respiratory carriers in the presence of antimycin. Valinomycin plus K+ enhances the rate of cytochrome c oxidation and the rate and extent of H+ release. In the presence of valinomycin the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 136 3  شماره 

صفحات  -

تاریخ انتشار 1973