Multiglods: Global and Local Multiobjective Optimization Using Direct Search

نویسندگان

  • A. L. CUSTÓDIO
  • J. F. A. MADEIRA
چکیده

The optimization of multimodal functions is a challenging task, in particular when derivatives are not available for use. Recently, in a directional direct search framework, a clever multistart strategy was proposed for global derivative-free optimization of single objective functions. The goal of the current work is to generalize this approach to the computation of global Pareto fronts for multiobjective multimodal derivative-free optimization problems. The proposed algorithm alternates between initializing new searches, using a multistart strategy, and exploring promising subregions, resorting to directional direct search. Components of the objective function are not aggregated and new points are accepted using the concept of Pareto dominance. The initialized searches are not all conducted until the end, merging when start to be close to each other. The convergence of the method is analyzed under the common assumptions of directional direct search. Numerical experiments show its ability to generate approximations to the different Pareto fronts of a given problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A local multiobjective optimization algorithm using neighborhood field

A new local search algorithm for multiobjective optimization problems is proposed to find the global optima accurately and diversely. This paper models the cooperatively local search as a potential field, which is called neighborhood field model (NFM). Using NFM, a new Multiobjective Neighborhood Field Optimization (MONFO) algorithm is proposed. In MONFO, the neighborhood field can drive each i...

متن کامل

Adaptive directional local search strategy for hybrid evolutionary multiobjective optimization

A novel adaptive local search method is developed for hybrid evolutionary multiobjective algorithms (EMOA) to improve convergence to the Pareto front in multiobjective optimization. The concepts of local and global effectiveness of a local search operator are suggested for dynamic adjustment of adaptation parameters. Local effectiveness is measured by quantitative comparison of improvements in ...

متن کامل

OPTIMIZATION OF SKELETAL STRUCTURES USING IMPROVED GENETIC ALGORITHM BASED ON PROPOSED SAMPLING SEARCH SPACE IDEA

In this article, by Partitioning of designing space, optimization speed is tried to be increased by GA. To this end, designing space search is done in two steps which are global search and local search. To achieve this goal, according to meshing in FEM, firstly, the list of sections is divided to specific subsets. Then, intermediate member of each subset, as representative of subset, is defined...

متن کامل

Towards Landscape Analyses to Inform the Design of Hybrid Local Search for the Multiobjective Quadratic Assignment Problem

Abstract. The quadratic assignment problem (QAP) is a very difficult and practically relevant combinatorial optimization problem which has attracted much research effort. Local search (LS) moves can be quickly evaluated on the QAP, and hence favoured methods tend to be hybrids of global optimization schemes and LS. Here we introduce the multiobjective QAP (mQAP) where distinct QAPs must be mini...

متن کامل

Augmented Downhill Simplex a Modified Heuristic Optimization Method

Augmented Downhill Simplex Method (ADSM) is introduced here, that is a heuristic combination of Downhill Simplex Method (DSM) with Random Search algorithm. In fact, DSM is an interpretable nonlinear local optimization method. However, it is a local exploitation algorithm; so, it can be trapped in a local minimum. In contrast, random search is a global exploration, but less efficient. Here, rand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017