Kinetic isotope effects and ligand binding in PQQ-dependent methanol dehydrogenase.

نویسندگان

  • Parvinder Hothi
  • Michael J Sutcliffe
  • Nigel S Scrutton
چکیده

The reaction of PQQ (2,7,9-tricarboxypyrroloquinoline quinone)-dependent MDH (methanol dehydrogenase) from Methylophilus methylotrophus has been studied under steady-state conditions in the presence of an alternative activator [GEE (glycine ethyl ester)] and compared with similar reactions performed with ammonium (used more generally as an activator in steady-state analysis of MDH). Studies of initial velocity with methanol (protiated methanol, C1H3O1H) and [2H]methanol (deuteriated methanol, C2H3O2H) as substrate, performed with different concentrations of GEE and PES (phenazine ethosulphate), indicate competitive binding effects for substrate and PES on the stimulation and inhibition of enzyme activity by GEE. GEE is more effective at stimulating activity than ammonium at low concentrations, suggesting tighter binding of GEE to the active site. Inhibition of activity at high GEE concentration is less pronounced than at high ammonium concentration. This suggests a close spatial relationship between the stimulatory (KS) and inhibitory (KI) binding sites in that binding of GEE to the KS site sterically impairs the binding of GEE to the KI site. The binding of GEE is also competitive with the binding of PES, and GEE is more effective than ammonium in competing with PES. This competitive binding of GEE and PES lowers the effective concentration of PES at the site competent for electron transfer. Accordingly, the oxidative half-reaction, which is second-order with respect to PES concentration, is more rate-limiting in steady-state turnover with GEE than with ammonium. The smaller methanol C-1H/C-2H kinetic isotope effects observed with GEE are consistent with a larger contribution made by the oxidative half-reaction to rate limitation. Cyanide is much less effective at suppressing 'endogenous' activity in the presence of GEE than with ammonium, which is attributed to impaired binding of cyanide to the catalytic site through steric interaction with GEE bound at the KS site. The kinetic model developed previously for reactions of MDH with ammonium [Hothi, Basran, Sutcliffe and Scrutton (2003) Biochemistry 42, 3966-3978] is consistent with data obtained with GEE, although a more detailed structural interpretation is given here. Molecular-modelling studies rationalize the kinetic observations in terms of a complex binding scenario at the molecular level involving two spatially distinct inhibitory sites (KI and KI'). The KI' site caps the entrance to the active site and is interpreted as the PES binding site. The KI site is adjacent to, and, for GEE, overlaps with, the KS site, and is located in the active-site cavity close to the PQQ cofactor and the catalytic site for methanol oxidation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Replacement of enzyme-bound calcium with strontium alters the kinetic properties of methanol dehydrogenase.

Methanol dehydrogenase (MEDH) possesses tightly bound Ca2+ in addition to its pyrroloquinoline quinone (PQQ) prosthetic group. Ca2+ was replaced with Sr2+ by growing the host bacterium, Paracoccus denitrificans, in media in which Ca2+ was replaced with Sr2+. MEDH, which was purified from these cells (Sr-MEDH), exhibited an increased absorption coefficient for the PQQ chromophore, and displayed ...

متن کامل

Structural requirements of pyrroloquinoline quinone dependent enzymatic reactions.

On the basis of crystal structures of the pyrroloquinoline quinone (PQQ) dependent enzymes methanol dehydrogenase (MDH) and soluble glucose dehydrogenase (s-GDH), different catalytic mechanisms have been proposed. However, several lines of biochemical and kinetic evidence are strikingly similar for both enzymes. To resolve this discrepancy, we have compared the structures of these enzymes in co...

متن کامل

Prerequisites for amplicon pyrosequencing of microbial methanol utilizers in the environment

The commercial availability of next generation sequencing (NGS) technologies facilitated the assessment of functional groups of microorganisms in the environment with high coverage, resolution, and reproducibility. Soil methylotrophs were among the first microorganisms in the environment that were assessed with molecular tools, and nowadays, as well with NGS technologies. Studies in the past ye...

متن کامل

Characterization of a novel methanol dehydrogenase containing a Ba2+ ion at the active site.

The quinoprotein methanol dehydrogenase (MDH) contains a Ca2+ ion at the active site. Ca(2-)-free enzyme (from a processing mutant) was used to obtain enzyme containing Sr2+ or Ba2+, the Ba(2+)-MDH being the first enzyme to be described in which a Ba2+ ion functions at the active site. The activation energy for oxidation of methanol by Ba(2+)-MDH is less than half that of the reaction catalysed...

متن کامل

In silico studies of the mechanism of methanol oxidation by quinoprotein methanol dehydrogenase.

The mechanism of bacterial methanol dehydrogenase involves hydride equivalent transfer from substrate to the ortho-quinone PQQ to provide a C5-reduced intermediate that subsequently rearranges to the hydroquinone PQQH(2). We have studied the PQQ reduction by molecular dynamic (MD) simulations in aqueous solution. Among the five simulated structures, either Asp297 or Glu171 or both are ionized. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 388 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2005