Development of Improved Models for Imputing Missing Traffic Counts
نویسندگان
چکیده
Estimating missing values is known as data imputation. A literature review indicates that many highway and transportation agencies in North America and Europe use various traditional methods to impute their traffic counts. These methods can be broadly categorized into factor and time series analysis approaches. However, little or no research has been conducted to assess the imputation accuracy. The literature indicates that the current practices are varied, and the methods used by highway agencies are intuitive in nature. Typical imputation methods used by highway agencies are identified and applied to data from six automatic traffic recorders (ATRs) in Alberta, Canada, to evaluate their accuracy. Statistical analysis shows that these traditional methods result in varying accuracy for traffic counts from different types of roads. In some cases, the imputation errors can be unacceptably high. Therefore, improved imputation methods are proposed. Study results indicate that imputation accuracy can be significantly improved by incorporating correction factors and data from both before and after the failure periods into the traditional models. The improved imputations should provide transportation practitioners better information for decision marking purposes.
منابع مشابه
Spatial Copula Model for Imputing Traffic Flow Data from Remote Microwave Sensors
Issues of missing data have become increasingly serious with the rapid increase in usage of traffic sensors. Analyses of the Beijing ring expressway have showed that up to 50% of microwave sensors pose missing values. The imputation of missing traffic data must be urgently solved although a precise solution that cannot be easily achieved due to the significant number of missing portions. In thi...
متن کاملThe Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...
متن کاملEstimation of missing traffic counts using factor, genetic, neural, and regression techniques
Analyses from some of the highway agencies show that up to 50% permanent traffic counts (PTCs) have missing values. It will be difficult to eliminate such a significant portion of data from traffic analysis. Literature review indicates that the limited research uses factor or autoregressive integrated moving average (ARIMA) models for predicting missing values. Factor-based models tend to be le...
متن کاملDevelopment of Models for Crash Prediction and Collision Estimation- A Case Study for Hyderabad City
Road traffic crash is a cause of unnatural death and occupies fifth position in the world as per WHO records. Road crashes in India are alarming in situation while road safety is professionally lacking and politically missing. Hyderabad city, the capital of newly formed Telangana State occupies sixth position in occurrence of road crashes. An attempt is made to understan...
متن کاملThe Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models are accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive loop d...
متن کامل