CHAPTER 4 A closer look at the advection equation

نویسنده

  • David A. Randall
چکیده

This means that the value of does not change following a particle. We say that is “conserved” following a particle. In fluid dynamics, we consider an infinite collection of fluid particles. According to (4.2), each particle maintains its value of as it moves. If we do a survey of the values of in our fluid system, let advection occur, and conduct a “follow-up” survey, we will find that exactly the same values of are still in the system. The locations of the particles presumably will have changed, but the maximum value of over the population of particles is unchanged by advection, the minimum value is unchanged, the average is unchanged, and in fact all of the statistics of the distribution of over the mass of the fluid are completely unchanged by the advective process. This is an important characteristic of advection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A closer look at the advection equation

Most of this chapter is devoted to a discussion of the one-dimensional advection equation, (4.1) Here A is the advected quantity, and c is the advecting current. This is a linear, first-order, partial differential equation with a constant coefficient, namely c. Both space and time differencing are discussed in this chapter, but more emphasis is placed on space differencing. We have already pres...

متن کامل

REVIEW SECTION

A Look at Contemporary Persian Poetry, Currents in Persian Poetry in 20th Century This book is a historical survey of literature though the writer has tried to distance himself from ancient approaches and to apply a modern look of analysis, critique and stylistics. In the first chapter the methodology is discussed followed by the second chapter which talks of text and metatext and the relation...

متن کامل

Two-dimensional advection-dispersion equation with depth- dependent variable source concentration

The present work solves two-dimensional Advection-Dispersion Equation (ADE) in a semi-infinite domain. A variable source concentration is regarded as the monotonic decreasing function at the source boundary (x=0). Depth-dependent variables are considered to incorporate real life situations in this modeling study, with zero flux condition assumed to occur at the exit boundary of the domain, i.e....

متن کامل

I'm No Longer a Child: A Closer Look at the Interaction Between Iranian EFL University Students' Identities and Their Academic Performance

Although university EFL students represent a wide array of social and cultural identities, their multiple and diverse identities are not usually considered in foreign language classrooms. This qualitative case study attempted to examine identity conflicts experienced by Iranian EFL learners at the university context. To this end, two Shiraz University students' identities were investigated. Sem...

متن کامل

Two-dimensional advection-dispersion equation with depth- dependent variable source concentration

The present work solves two-dimensional Advection-Dispersion Equation (ADE) in a semi-infinite domain. A variable source concentration is regarded as the monotonic decreasing function at the source boundary (x=0). Depth-dependent variables are considered to incorporate real life situations in this modeling study, with zero flux condition assumed to occur at the exit boundary of the domain, i.e....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004