In vivo magnetic resonance elastography of human brain at 7 T and 1.5 T.
نویسندگان
چکیده
PURPOSE To investigate the feasibility of quantitative in vivo ultrahigh field magnetic resonance elastography (MRE) of the human brain in a broad range of low-frequency mechanical vibrations. MATERIALS AND METHODS Mechanical vibrations were coupled into the brain of a healthy volunteer using a coil-driven actuator that either oscillated harmonically at single frequencies between 25 and 62.5 Hz or performed a superimposed motion consisting of multiple harmonics. Using a motion sensitive single-shot spin-echo echo planar imaging sequence shear wave displacements in the brain were measured at 1.5 and 7 T in whole-body MR scanners. Spatially averaged complex shear moduli were calculated applying Helmholtz inversion. RESULTS Viscoelastic properties of brain tissue could be reliably determined in vivo at 1.5 and 7 T using both single-frequency and multifrequency wave excitation. The deduced dispersion of the complex modulus was consistent within different experimental settings of this study for the measured frequency range and agreed well with literature data. CONCLUSION MRE of the human brain is feasible at 7 T. Superposition of multiple harmonics yields consistent results as compared to standard single-frequency based MRE. As such, MRE is a system-independent modality for measuring the complex shear modulus of in vivo human brain in a wide dynamic range.
منابع مشابه
DNA Damages on Blood Cells After Cardiac Magnetic Resonance Imaging
Introduction: Along with the increased use of cardiac imaging at clinics there is increased attention to the potential risks related to the methods used like magnetic resonance (MR) and it cannot be ruled out that MR can alter DNA structure. The aim of this review is to assess the impact of routine cardiac magnetic resonance (CMR) scanning on DNA damages in human T lymphocytes....
متن کاملI-51: Pioneering New Approaches to Reproductive Imaging
Background: Gynecologic conditions including uterine fibroids, adenomyosis and endometriosis lead to significant impairment in women’s’ lives and significant expen- Abstracts of the 12th Royan International Congress on Reproductive Biomedicine International Journal of Fertility & Sterility (IJFS), Vol 5, Suppl 1, Summer 2011 24 ditures of health care dollars. However, many women have symptoms l...
متن کاملMagnetic resonance elastography of the brain
The purpose of this study was to obtain normative data using magnetic resonance elastography (MRE) (a) to obtain estimates of the shear modulus of human cerebral tissue in vivo and (b) to assess a possible age dependence of the shear modulus of cerebral tissue in healthy adult volunteers. MR elastography studies were performed on tissue-simulating gelatin phantoms and 25 healthy adult volunteer...
متن کاملSexual Dimorphism in Volume of the Cerebral Hemispheres and Lateral Ventricles in Schizophrenia Using Magnetic Resonance Imaging
Purpose: This study is designed to determine the sexual dimorphism pattern in volume of the cerebral hemispheres and lateral ventricles in schizophrenia using magnetic resonance imaging (MRI) and to compare it with normal sexual dimorphism pattern in healthy brains. Materials and Methods: This study is performed on 29 healthy volunteers (21 males, 8 females) and 29 patients suffered from schiz...
متن کاملDecrease of brain stiffness compared to loss of brain volume in Multiple Sclerosis patients
Background: Chronic inflammatory diseases of the CNS such as Multiple Sclerosis (MS) lead to demyelinization and to widespread degradation of neurons and axons. The loss of neurons and axons alters the mechanical structure and therefore the elasticity of the brain, a process which may be useable for early recognition of diffuse pathological degeneration [1]. Problem: Current knowledge of biomec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of magnetic resonance imaging : JMRI
دوره 32 3 شماره
صفحات -
تاریخ انتشار 2010