Clusters of Basic Amino Acids Contribute to RNA Binding and Nucleolar Localization of Ribosomal Protein L22

نویسندگان

  • Jennifer L. Houmani
  • Ingrid K. Ruf
چکیده

The ribosomal protein L22 is a component of the 60S eukaryotic ribosomal subunit. As an RNA-binding protein, it has been shown to interact with both cellular and viral RNAs including 28S rRNA and the Epstein-Barr virus encoded RNA, EBER-1. L22 is localized to the cell nucleus where it accumulates in nucleoli. Although previous studies demonstrated that a specific amino acid sequence is required for nucleolar localization, the RNA-binding domain has not been identified. Here, we investigated the hypothesis that the nucleolar accumulation of L22 is linked to its ability to bind RNA. To address this hypothesis, mutated L22 proteins were generated to assess the contribution of specific amino acids to RNA binding and protein localization. Using RNA-protein binding assays, we demonstrate that basic amino acids 80-93 are required for high affinity binding of 28S rRNA and EBER-1 by L22. Fluorescence localization studies using GFP-tagged mutated L22 proteins further reveal that basic amino acids 80-93 are critical for nucleolar accumulation and for incorporation into ribosomes. Our data support the growing consensus that the nucleolar accumulation of ribosomal proteins may not be mediated by a defined localization signal, but rather by specific interaction with established nucleolar components such as rRNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleolar binding sequences of the ribosomal protein S6e family reside in evolutionary highly conserved peptide clusters.

Proteomic analyses of the nucleolus have revealed almost 700 functionally diverse proteins implicated in ribosome biogenesis, nucleolar assembly, and regulation of vital cellular processes. However, this nucleolar inventory has not unveiled a specific consensus motif necessary for nucleolar binding. The ribosomal protein family characterized by their basic nature should exhibit distinct binding...

متن کامل

An acidic amino acid cluster regulates the nucleolar localization and ribosome assembly of human ribosomal protein L22.

The control of human ribosomal protein L22 (rpL22) to enter into the nucleolus and its ability to be assembled into the ribosome is regulated by its sequence. The nuclear import of rpL22 depends on a classical nuclear localization signal of four lysines at positions 13-16. RpL22 normally enters the nucleolus via a compulsory sequence of KKYLKK (I-domain, positions 88-93). An acidic residue clus...

متن کامل

Elucidation of Motifs in Ribosomal Protein S9 That Mediate Its Nucleolar Localization and Binding to NPM1/Nucleophosmin

Biogenesis of eukaryotic ribosomes occurs mainly in a specific subnuclear compartment, the nucleolus, and involves the coordinated assembly of ribosomal RNA and ribosomal proteins. Identification of amino acid sequences mediating nucleolar localization of ribosomal proteins may provide important clues to understand the early steps in ribosome biogenesis. Human ribosomal protein S9 (RPS9), known...

متن کامل

Distinct domains in ribosomal protein L5 mediate 5 S rRNA binding and nucleolar localization.

Ribosomal protein L5, a 34-kDa large ribosomal subunit protein, binds to 5 S rRNA and has been implicated in the intracellular transport of 5 S rRNA. By immunofluorescence microscopy, L5 is detected mostly in the nucleolus with a fainter signal in the nucleoplasm, and it is known to also be a component of large ribosomal subunits in the cytoplasm. 5 S rRNA is transcribed in the nucleoplasm, a...

متن کامل

Multiple regions of NSR1 are sufficient for accumulation of a fusion protein within the nucleolus

NSR1, a 67-kD nucleolar protein, was originally identified in our laboratory as a nuclear localization signal binding protein, and has subsequently been found to be involved in ribosome biogenesis. NSR1 has three regions: an acidic/serine-rich NH2 terminus, two RNA recognition motifs, and a glycine/arginine-rich COOH terminus. In this study we show that NSR1 itself has a bipartite nuclear local...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009