Using Moderate-Resolution Temporal NDVI Profiles for High-Resolution Crop Mapping in Years of Absent Ground Reference Data: A Case Study of Bole and Manas Counties in Xinjiang, China
نویسندگان
چکیده
Most methods used for crop classification rely on the ground-reference data of the same year, which leads to considerable financial and labor cost. In this study, we presented a method that can avoid the requirements of a large number of ground-reference data in the classification year. Firstly, we extracted the Normalized Difference Vegetation Index (NDVI) time series profiles of the dominant crops from MODIS data using the historical ground-reference data in multiple years (2006, 2007, 2009 and 2010). Artificial Antibody Network (ABNet) was then employed to build reference NDVI time series for each crop based on the historical NDVI profiles. Afterwards, images of Landsat and HJ were combined to obtain 30 m image time series with 15-day acquisition frequency in 2011. Next, the reference NDVI time series were transformed to Landsat/HJ NDVI time series using their linear model. Finally, the transformed reference NDVI profiles were used to identify the crop types in 2011 at 30 m spatial resolution. The result showed that the dominant crops could be identified with overall accuracy of 87.13% and 83.48% in Bole and Manas, respectively. In addition, the reference NDVI profiles generated from multiple years could achieve better classification accuracy than that from single year (such as only 2007). This is mainly because the reference knowledge from multiple years contains more growing conditions of the same crop. Generally, this approach showed potential to identify crops without using large number of ground-reference data at 30 m resolution.
منابع مشابه
The Potential of Time Series Merged from Landsat-5 TM and HJ-1 CCD for Crop Classification: A Case Study for Bole and Manas Counties in Xinjiang, China
Time series data capture crop growth dynamics and are some of the most effective data sources for crop mapping. However, a drawback of precise crop classification at medium resolution (30 m) using multi-temporal data is that some images at crucial time periods are absent from a single sensor. In this research, a medium-resolution, 15-day time series was obtained by merging Landsat-5 TM and HJ-1...
متن کاملReconstruction of Daily 30 m Data from HJ CCD, GF-1 WFV, Landsat, and MODIS Data for Crop Monitoring
With the recent launch of new satellites and the developments of spatiotemporal data fusion methods, we are entering an era of high spatiotemporal resolution remote-sensing analysis. This study proposed a method to reconstruct daily 30 m remote-sensing data for monitoring crop types and phenology in two study areas located in Xinjiang Province, China. First, the Spatial and Temporal Data Fusion...
متن کاملPreparation of Rangeland vegetation cover map and monitoring its changes in drought and wet periods using NDVI MODIS product (Case Study: Southern Rangelands of Yazd Province)
Knowledge of rangeland vegetation characteristics as well as factors affecting it in environmental planning, land management and sustainable development is very important. However, regional and up-to-date maps of pasture vegetation cover are not always available. In this study, in order to plot the vegetation cover percentage of the rangelands and monitor its changes in drought and wet periods,...
متن کاملEstimation of Inter-annual Crop Area Variation by the Application of Spectral Angle Mapping to Low Resolution Multitemporal NDVI Images
This current work is aimed at developing and testing a methodology which can be applied to low spatial resolution satellite data to assess inter-annual crop area variations on a regional scale. The methodology is based on the assumption that within mixed pixels, such variations are reflected by changes of the related multitemporal Normalised Difference Vegetation Index (NDVI) profiles. This imp...
متن کاملCrop Phenology Detection Using High Spatio-Temporal Resolution Data Fused from SPOT5 and MODIS Products
Timely and efficient monitoring of crop phenology at a high spatial resolution are crucial for the precise and effective management of agriculture. Recently, satellite-derived vegetation indices (VIs), such as the Normalized Difference Vegetation Index (NDVI), have been widely used for the phenology detection of terrestrial ecosystems. In this paper, a framework is proposed to detect crop pheno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ISPRS Int. J. Geo-Information
دوره 5 شماره
صفحات -
تاریخ انتشار 2016