Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes.
نویسندگان
چکیده
Three-dimensional (3D) nanowire (NW) networks are promising for designing high-performance photoelectrochemical (PEC) electrodes owing to their long optical path for efficient light absorption, high-quality one-dimensional conducting channels for rapid electron-hole separation and charge transportation, as well as high surface areas for fast interfacial charge transfer and electrochemical reactions. By growing titanium dioxide (TiO(2)) nanorods (NRs) uniformly on dense Si NW array backbones, we demonstrated a novel three-dimensional high-density heterogeneous NW architecture that could enhance photoelectrochemical efficiency. A 3D NW architecture consisting of 20 μm long wet-etched Si NWs and dense TiO(2) NRs yielded a photoelectrochemical efficiency of 2.1%, which is three times higher than that of TiO(2) film-Si NWs having a core-shell structure. This result suggests that the 3D NW architecture is superior to straight NW arrays for PEC electrode design. The efficiency could be further improved by optimizing the number of overcoating cycles and the length/density of NW backbones. By implementing these 3D NW networks into electrode design, one may be able to advantageously impact PEC and photovoltaic device performance.
منابع مشابه
Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties.
Three-dimensional hierarchical nanostructures were synthesized by the halide chemical vapor deposition of InGaN nanowires on Si wire arrays. Single phase InGaN nanowires grew vertically on the sidewalls of Si wires and acted as a high surface area photoanode for solar water splitting. Electrochemical measurements showed that the photocurrent density with hierarchical Si/InGaN nanowire arrays in...
متن کاملHierarchical TiO2–Si nanowire architecture with photoelectrochemical activity under visible light illumination†
Bandgap engineering of TiO2 is a substantial strategy for efficient water splitting in the visible light range. Introducing dopants and hydrogenation have been found effective for that purpose. In this paper, we report the development of a hierarchical three dimensional TiO2–Si nanowire (NW)-based photoelectrochemical (PEC) anode with visible light photochemical activity. The TiO2 NWs were synt...
متن کاملHigh-performance supercapacitor electrodes based on hierarchical Ti@MnO(2) nanowire arrays.
Ti nanowire arrays (NAs) prepared by a facile and template-free hydrothermal method were used as three-dimensional (3D) current collectors for the electrodeposition of MnO2. The resulting Ti@MnO2 NAs exhibit remarkable electrochemical behavior with high specific capacitance, good rate performance and desired cycling stability.
متن کاملHierarchical NiMoO4 nanowire arrays supported on macroporous graphene foam as binder-free 3D anodes for high-performance lithium storage.
Novel three-dimensional (3D) NiMoO4 nanowire arrays (NWAs) grown directly onto the surface of macroporous graphene foams (GF) with robust adhesion were synthesized via a facile chemical vapor deposition (CVD) and subsequent hydrothermal route. The as-prepared NiMoO4 nanowires are composed of ultra-small nanoparticles (∼5 nm) with a diameter of 70-150 nm and are several micrometers in length. Su...
متن کاملUltrafine MnO2 Nanowire Arrays Grown on Carbon Fibers for High-Performance Supercapacitors
Large-area ultrafine MnO2 nanowire arrays (NWA) directly grew on a carbon fiber (CF, used as a substrate) by a simple electrochemical method, forming three-dimensional (3D) hierarchical heterostructures of a CF@MnO2 NWA composite. As an electrode for supercapacitors, the CF@MnO2 NWA composite exhibits excellent electrochemical performances including high specific capacitance (321.3 F g-1 at 100...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 11 8 شماره
صفحات -
تاریخ انتشار 2011