Resonant Geometric Phases for Soliton Equations

نویسندگان

  • M. S. Alber
  • Solomon J. Alber
چکیده

Methods of symplectic and complex geometry have recently given important information about the phase-space geometry of nonlinear equations (see, for example, Ercolani, Forest, McLaughlin, and Montgomery [1987], Ercolani [1989], Ercolani and McLaughlin [1991]' McLaughlin and Overman [1993]). A few specific examples are as follows. From the point of view of complex geometry, the reality conditions and homo clinic varieties for the sine-Gordon (SG) equation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological soliton solutions of the some nonlinear partial differential equations

In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...

متن کامل

Geometric Phases, Reduction and Lie-Poisson Structure for the Resonant Three-wave Interaction∗

Hamiltonian Lie-Poisson structures of the three-wave equations associated with the Lie algebras su(3) and su(2, 1) are derived and shown to be compatible. Poisson reduction is performed using the method of invariants and geometric phases associated with the reconstruction are calculated. These results can be applied to applications of nonlinear-waves in, for instance, nonlinear optics. Some of ...

متن کامل

Group-invariant Soliton Equations and Bi-hamiltonian Geometric Curve Flows in Riemannian Symmetric Spaces

Universal bi-Hamiltonian hierarchies of group-invariant (multicomponent) soliton equations are derived from non-stretching geometric curve flows γ(t, x) in Riemannian symmetric spaces M = G/H, including compact semisimple Lie groups M = K for G = K×K, H = diag G. The derivation of these soliton hierarchies utilizes a moving parallel frame and connection 1-form along the curve flows, related to ...

متن کامل

Multicomponent integrable wave equations II. Soliton solutions

The Darboux–Dressing Transformations developed in [1] are here applied to construct soliton solutions for a class of boomeronic–type equations. The vacuum (i.e. vanishing) solution and the generic plane wave solution are both dressed to yield one soliton solutions. The formulae are specialised to the particularly interesting case of the resonant interaction of three waves, a well-known model wh...

متن کامل

Multicomponent integrable wave equations: I. Darboux-dressing transformation

The Darboux-dressing transformations are applied to the Lax pair associated with systems of coupled nonlinear wave equations in the case of boundary values which are appropriate to both ‘bright’ and ‘dark’ soliton solutions. The general formalism is set up and the relevant equations are explicitly solved. Several instances of multicomponent wave equations of applicative interest, such as vector...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010