A fast, model-independent method for cerebral cortical thickness estimation using MRI

نویسندگان

  • Marietta L. J. Scott
  • Paul A. Bromiley
  • Neil A. Thacker
  • C. E. Hutchinson
  • Alan Jackson
چکیده

Several algorithms for measuring the cortical thickness in the human brain from MR image volumes have been described in the literature, the majority of which rely on fitting deformable models to the inner and outer cortical surfaces. However, the constraints applied during the model fitting process in order to enforce spherical topology and to fit the outer cortical surface in narrow sulci, where the cerebrospinal fluid (CSF) channel may be obscured by partial voluming, may introduce bias in some circumstances, and greatly increase the processor time required. In this paper we describe an alternative, voxel based technique that measures the cortical thickness using inversion recovery anatomical MR images. Grey matter, white matter and CSF are identified through segmentation, and edge detection is used to identify the boundaries between these tissues. The cortical thickness is then measured along the local 3D surface normal at every voxel on the inner cortical surface. The method was applied to 119 normal volunteers, and validated through extensive comparisons with published measurements of both cortical thickness and rate of thickness change with age. We conclude that the proposed technique is generally faster than deformable model-based alternatives, and free from the possibility of model bias, but suffers no reduction in accuracy. In particular, it will be applicable in data sets showing severe cortical atrophy, where thinning of the gyri leads to points of high curvature, and so the fitting of deformable models is problematic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessing the Changes of Cortical Thickness in Alzheimer Disease With MRI Using Freesurfer Software

Introduction: In this study, we intend to determine the correlation between the thickness of the cerebral cortex and the severity of the cognitive disorder in Alzheimer disease (AD). Methods: A total of 20 (14 women and 6 men) patients diagnosed with AD with a Mean age of 72.95 years, and 10 (7 women and 3 men) cognitively normal (CN) subjects with a Mean age of 70.50 years were included in th...

متن کامل

Assessment the Changes of Cortical Thickness in Alzheimer’s Disease in MR images using Freesurfer Software

Purpose: In this study, the main goal was to determine the correlation between the thickness of cerebral cortex and the severity of cognitive disorder in Alzheimer's disease Materials and method: Twenty patients diagnosed with Alzheimer’s disease with mean age of 72.95 year(14 women and 6 men) and Ten Cognitively normal (CN) subjects with mean age of 70.50 year( 7 women and 3 men) were include...

متن کامل

Multimodal structural MRI in the diagnosis of motor neuron diseases

This prospective study developed an MRI-based method for identification of individual motor neuron disease (MND) patients and test its accuracy at the individual patient level in an independent sample compared with mimic disorders. 123 patients with amyotrophic lateral sclerosis (ALS), 44 patients with predominantly upper motor neuron disease (PUMN), 20 patients with ALS-mimic disorders, and 78...

متن کامل

Measurement of cortical thickness in 3D brain MRI data: validation of the Laplacian method.

OBJECTIVES We aimed to determine the precision of the Laplacian approach for cortical thickness measurement due to changes in computational and acquisition parameters. We compared these results to two other methods widely used in clinical research using brain MRI data. MATERIALS AND METHODS Brain MRI scans were obtained in 10 healthy adults using three different sets of acquisition parameters...

متن کامل

Cortical thickness determination of the human brain using high resolution 3 T and 7 T MRI data

PURPOSE The analysis of the human cerebral cortex and the measurement of its thickness based on MRI data can provide insight into normal brain development and neurodegenerative disorders. Accurate and reproducible results of the cortical thickness measurement are desired for sensitive detection. This study compares ultra-high resolution data acquired at 7T with 3T data for determination of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image analysis

دوره 13 2  شماره 

صفحات  -

تاریخ انتشار 2009