Laser light triggers increased Raman amplification in the regime of nonlinear Landau damping

نویسندگان

  • S. Depierreux
  • V. Yahia
  • C. Goyon
  • G. Loisel
  • P. -E. Masson-Laborde
  • N. Borisenko
  • A. Orekhov
  • O. Rosmej
  • T. Rienecker
  • C. Labaune
چکیده

Stimulated Raman backscattering (SRS) has many unwanted effects in megajoule-scale inertially confined fusion (ICF) plasmas. Moreover, attempts to harness SRS to amplify short laser pulses through backward Raman amplification have achieved limited success. In high-temperature fusion plasmas, SRS usually occurs in a kinetic regime where the nonlinear response of the Langmuir wave to the laser drive and its host of complicating factors make it difficult to predict the degree of amplification that can be achieved under given experimental conditions. Here we present experimental evidence of reduced Landau damping with increasing Langmuir wave amplitude and determine its effects on Raman amplification. The threshold for trapping effects to influence the amplification is shown to be very low. Above threshold, the complex SRS dynamics results in increased amplification factors, which partly explains previous ICF experiments. These insights could aid the development of more efficient backward Raman amplification schemes in this regime.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical coupling of Landau damping and Raman amplification

In this paper, we present a numerical model for laser-plasma interaction involving Raman instability and Landau damping. This model exhibits three main difficulties. The first one is the coupling of PDE’s posed both in Fourier space and in physical space. The second one is a three wave resonance condition that has to be verified. The third one is the boundary conditions. We overcome these diffi...

متن کامل

Observation of Raman Gain in Reduced Length of Bismuth Erbium Doped Fiber

Raman amplification of a 49 cm Bismuth oxide (Bi2O3) as a nonlinear gainmedium based erbium doped fiber amplifier (EDFA) is reported in new and compactdesign in near infrared spectral regions. The bismuth glass host provides theopportunity to be doped heavily with erbium ions to allow a compact optical gain fiberamplifier design by using reduced fiber length and the 1480...

متن کامل

Slowly varying envelope kinetic simulations of pulse amplification by Raman backscattering

A numerical code based on an eikonal formalism has been developed to simulate laser-plasma interactions, specifically Raman backscatter (RBS). In this code, the dominant laser modes are described by their wave envelopes, avoiding the need to resolve the laser frequency; appropriately time-averaged equations describe particle motion. The code is fully kinetic, and thus includes critical physics ...

متن کامل

Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses.

The intensity of a subpicosecond laser pulse was amplified by a factor of up to 1000 using the Raman backscatter interaction in a 2 mm long gas jet plasma. The process of Raman amplification reached the nonlinear regime, with the intensity of the amplified pulse exceeding that of the pump pulse by more than an order of magnitude. Features unique to the nonlinear regime such as gain saturation, ...

متن کامل

Accurate Formulas for the Landau Damping Rates of Electrostatic Waves

LLE Review, Volume 74 113 Laser–plasma instabilities1 are important in the field of inertial confinement fusion2 because they scatter laser light away from the target, which reduces the laser energy available to drive the compression of the nuclear fuel, or generate energetic electrons that preheat the fuel, which makes the fuel harder to compress. In stimulated Raman scattering an incident, or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014