Myeloid-derived suppressor cells are involved in lysosomal acid lipase deficiency-induced endothelial cell dysfunctions.

نویسندگان

  • Ting Zhao
  • Xinchun Ding
  • Hong Du
  • Cong Yan
چکیده

The underlying mechanisms that lysosomal acid lipase (LAL) deficiency causes infiltration of myeloid-derived suppressor cells (MDSCs) in multiple organs and subsequent inflammation remain incompletely understood. Endothelial cells (ECs), lining the inner layer of blood vessels, constitute barriers regulating leukocytes transmigration to the site of inflammation. Therefore, we hypothesized that ECs are dysfunctional in LAL-deficient (lal(-/-)) mice. We found that Ly6G(+) cells transmigrated more efficiently across lal(-/-) ECs than wild-type (lal(+/+)) ECs, which were associated with increased levels of PECAM-1 and MCP-1 in lal(-/-) ECs. In addition, lal(-/-) ECs showed enhanced migration and proliferation, decreased apoptosis, but impaired tube formation and angiogenesis. lal(-/-) ECs also suppressed T cell proliferation in vitro. Interestingly, lal(-/-) Ly6G(+) cells promoted in vivo angiogenesis (including a tumor model), EC tube formation, and proliferation. Finally, the mammalian target of rapamycin (mTOR) pathway was activated in lal(-/-) ECs, and inhibition of mTOR reversed EC dysfunctions, including decreasing Ly6G(+) cell transmigration, delaying migration, and relieving suppression of T cell proliferation, which was mediated by decreasing production of reactive oxygen species. Our results indicate that LAL regulates EC functions through interaction with MDSCs and modulation of the mTOR pathway, which may provide a mechanistic basis for targeting MDSCs or mTOR to rejuvenate EC functions in LAL deficiency-related diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Profile of Myeloid-Derived Suppressive Cells from the Bone Marrow of Lysosomal Acid Lipase Knock-Out Mice

BACKGROUND Lysosomal acid lipase (LAL) controls development and homeostasis of myeloid lineage cells. Loss of the lysosomal acid lipase (LAL) function leads to expansion of myeloid-derived suppressive cells (MDSCs) that cause myeloproliferative neoplasm. METHODOLOGY/PRINCIPAL FINDINGS Affymetrix GeneChip microarray analysis identified detailed intrinsic defects in Ly6G(+) myeloid lineage cell...

متن کامل

Establishment of lal-/- Myeloid Lineage Cell Line That Resembles Myeloid-Derived Suppressive Cells

Myeloid-derived suppressor cells (MDSCs) in mouse are inflammatory cells that play critical roles in promoting cancer growth and metastasis by directly stimulating cancer cell proliferation and suppressing immune surveillance. In order to facilitate characterization of biochemical and cellular mechanisms of MDSCs, it is urgent to establish an "MDSC-like" cell line. By cross breeding of immortom...

متن کامل

Critical role of PPARγ in myeloid-derived suppressor cell-stimulated cancer cell proliferation and metastasis

Lysosomal acid lipase (LAL) is a key enzyme controlling neutral lipid metabolic signaling in myeloid-derived suppressor cells (MDSCs). MDSCs from LAL-deficient (lal-/-) mice directly stimulate cancer cell proliferation. PPARγ ligand treatment inhibited lal-/- MDSCs stimulation of tumor cell growth and metastasis in vivo, and tumor cell proliferation and migration in vitro. In addition, PPARγ li...

متن کامل

Lysosomal acid lipase in mesenchymal stem cell stimulation of tumor growth and metastasis

Bone marrow mesenchymal stem cells (MSCs) are an important participant in the tumor microenvironment, in which they promote tumor growth and progression. Here we report for the first time that depletion of lysosomal acid lipase (LAL) in MSCs impairs their abilities to stimulate tumor growth and metastasis both in allogeneic and syngeneic mouse models. Reduced cell viability was observed in LAL-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 193 4  شماره 

صفحات  -

تاریخ انتشار 2014