Fixed points of a destabilized Kuramoto-Sivashinsky equation

نویسندگان

  • Ferenc A. Bartha
  • Warwick Tucker
چکیده

We consider the family of destabilized Kuramoto-Sivashinsky equations in one spatial dimension ut + νuxxxx + βuxx + γuux = αu for α,ν ≥ 0 and β ,γ ∈ R. For certain parameter values, shock-like stationary solutions have been numerically observed. In this work we verify the existence of several such solutions using the framework of self-consistent bounds and validated numerics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation

In this paper we obtain  exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    The methods used  to determine the exact solutions of the underlying equation are the Lie group analysis  and the simplest equation method. The solutions obtained are  then plotted.

متن کامل

Attracting Fixed Points for the Kuramoto-Sivashinsky Equation: A Computer Assisted Proof

We present a computer assisted proof of the existence of several attracting fixed points for the Kuramoto–Sivashinsky equation ut = (u )x − uxx − νuxxxx, u(x, t) = u(x+ 2π, t), u(x, t) = −u(−x, t), where ν > 0. The method is general and can be applied to other dissipative PDEs.

متن کامل

Study of the noise-induced transition and the exploration of the phase space for the Kuramoto–Sivashinsky equation using the minimum action method

Noise-induced transition in the solutions of the Kuramoto–Sivashinsky (K–S) equation is investigated using the minimum action method derived from the large deviation theory. This is then used as a starting point for exploring the configuration space of the K–S equation. The particular example considered here is the transition between a stable fixed point and a stable travelling wave. Five saddl...

متن کامل

Optimal Parameter-dependent Bounds for Kuramoto-sivashinsky-type Equations

We derive a priori estimates on the absorbing ball in L2 for the stabilized and destabilized Kuramoto-Sivashinsky (KS) equations, and for a sixth-order analog, the Nikolaevskiy equation, and in each case obtain bounds whose parameter dependence is demonstrably optimal. This is done by extending a Lyapunov function construction developed by Bronski and Gambill (Nonlinearity 19, 2023–2039 (2006))...

متن کامل

Viscous Shocks in the Destabilized Kuramoto-Sivashinsky Equation

We study stationary periodic solutions of the Kuramoto-Sivashinsky (KS) model for complex spatiotemporal dynamics in the presence of an additional linear destabilizing term. In particular, we show the phase space origins of the previously observed stationary “viscous shocks” and related solutions. These arise in a reversible four-dimensional dynamical system as perturbed heteroclinic connection...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 266  شماره 

صفحات  -

تاریخ انتشار 2015