Validation of a deformable MRI to CT registration algorithm employing same day planning MRI for surrogate analysis
نویسندگان
چکیده
PURPOSE Validating deformable multimodality image registrations is challenging due to intrinsic differences in signal characteristics and their spatial intensity distributions. Evaluating multimodality registrations using these spatial intensity distributions is also complicated by the fact that these metrics are often employed in the registration optimization process. This work evaluates rigid and deformable image registrations of the prostate in between diagnostic-MRI and radiation treatment planning-CT by utilizing a planning-MRI after fiducial marker placement as a surrogate. The surrogate allows for the direct quantitative analysis that can be difficult in the multimodality domain. METHODS For thirteen prostate patients, T2 images were acquired at two different time points, the first several weeks prior to planning (diagnostic-MRI) and the second on the same day as the planning-CT (planning-MRI). The diagnostic-MRI was deformed to the planning-CT utilizing a commercially available algorithm which synthesizes a deformable image registration (DIR) algorithm from local rigid registrations. The planning-MRI provided an independent surrogate for the planning-CT for assessing registration accuracy using image similarity metrics, including Pearson correlation and normalized mutual information (NMI). A local analysis was performed by looking only within the prostate, proximal seminal vesicles, penile bulb, and combined areas. RESULTS The planning-MRI provided an excellent surrogate for the planning-CT with residual error in fiducial alignment between the two datasets being submillimeter, 0.78 mm. DIR was superior to the rigid registration in 11 of 13 cases demonstrating a 27.37% improvement in NMI (P < 0.009) within a regional area surrounding the prostate and associated critical organs. Pearson correlations showed similar results, demonstrating a 13.02% improvement (P < 0.013). CONCLUSION By utilizing the planning-MRI as a surrogate for the planning-CT, an independent evaluation of registration accuracy is possible. This population provides an ideal testing ground for MRI to CT DIR by obviating the need for multimodality comparisons which are inherently more challenging.
منابع مشابه
Pseudo-CT Generation from Magnetic Resonance Imaging by fuzzy look up table algorithm
Introduction: Despite growing interest in the use of magnetic resonance imaging (MRI) in the external radiotherapy design process (RT), Computer Tomography (CT) remains a gold standard and is regarded as a basic imaging modality in radiotherapy. MRI shows the high contrast in soft tissues without any radiation exposure to patients. As a result, MRI is used in functional tissue ...
متن کاملA Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis
Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...
متن کاملUse of a CT statistical deformation model for multi-modal pelvic bone segmentation
We present a segmentation algorithm using a statistical deformation model constructed from CT data of adult male pelves coupled to MRI appearance data. The algorithm allows the semi-automatic segmentation of bone for a limited population of MRI data sets. Our application is pelvic bone delineation from pre-operative MRI for image guided pelvic surgery. Specifically, we are developing image guid...
متن کاملEdge- and Detail-Preserving Sparse Image Representations for Deformable Registration of Chest MRI and CT Volumes
Deformable medical image registration requires the optimisation of a function with a large number of degrees of freedom. Commonly-used approaches to reduce the computational complexity, such as uniform B-splines and Gaussian image pyramids, introduce translation-invariant homogeneous smoothing, and may lead to less accurate registration in particular for motion fields with discontinuities. This...
متن کاملResults of a multi-institution deformable registration accuracy study (MIDRAS).
PURPOSE To assess the accuracy, reproducibility, and computational performance of deformable image registration algorithms under development at multiple institutions on common datasets. METHODS AND MATERIALS Datasets from a lung patient (four-dimensional computed tomography [4D-CT]), a liver patient (4D-CT and magnetic resonance imaging [MRI] at exhale), and a prostate patient (repeat MRI) we...
متن کامل