On fuzzy-rough attribute selection: Criteria of Max-Dependency, Max-Relevance, Min-Redundancy, and Max-Significance
نویسندگان
چکیده
Attribute selection is one of the important problems encountered in pattern recognition, machine learning, data mining, and bioinformatics. It refers to the problem of selecting those input attributes or features that are most effective to predict the sample categories. In this regard, rough set theory has been shown to be successful for selecting relevant and nonredundant attributes from a given data set. However, the classical rough sets are unable to handle real valued noisy features. This problem can be addressed by the fuzzy-rough sets, which are the generalization of classical rough sets. A feature selection method is presented here based on fuzzy-rough sets by maximizing both relevance and significance of the selected features. This paper also presents different feature evaluation criteria such as dependency, relevance, redundancy, and significance for attribute selection task using fuzzy-rough sets. The performance of different rough set models is compared with that of some existing feature evaluation indices based on the predictive accuracy of nearest neighbor rule, support vector machine, and decision tree. The effectiveness of the fuzzy-rough set based attribute selection method, along with a comparison with existing feature evaluation indices and different rough set models, is demonstrated on a set of benchmark and microarray gene expression data sets.
منابع مشابه
Myhill-Nerode Fuzzy Congruences Corresponding to a General Fuzzy Automata
Myhill-Nerode Theorem is regarded as a basic theorem in the theories of languages and automata and is used to prove the equivalence between automata and their languages. The significance of this theorem has stimulated researchers to develop that on different automata thus leading to optimizing computational models. In this article, we aim at developing the concept of congruence in general fuzzy...
متن کاملMin-Uncertainty & Max-Certainty Criteria of Neighborhood Rough- Mutual Feature Selection
Feature Selection (FS) is viewed as an important preprocessing step for pattern recognition, machine learning, and data mining. Most existing FS methods based on rough set theory use the dependency function for evaluating the goodness of a feature subset. However, these FS methods may unsuccessfully be applied on dataset with noise, which determine only information from a positive region but ne...
متن کاملSOME HYPER K-ALGEBRAIC STRUCTURES INDUCED BY MAX-MIN GENERAL FUZZY AUTOMATA
We present some connections between the max-min general fuzzy automaton theory and the hyper structure theory. First, we introduce a hyper BCK-algebra induced by a max-min general fuzzy automaton. Then, we study the properties of this hyper BCK-algebra. Particularly, some theorems and results for hyper BCK-algebra are proved. For example, it is shown that this structure consists of different ty...
متن کاملRESOLUTION OF NONLINEAR OPTIMIZATION PROBLEMS SUBJECT TO BIPOLAR MAX-MIN FUZZY RELATION EQUATION CONSTRAINTS USING GENETIC ALGORITHM
This paper studies the nonlinear optimization problems subject to bipolar max-min fuzzy relation equation constraints. The feasible solution set of the problems is non-convex, in a general case. Therefore, conventional nonlinear optimization methods cannot be ideal for resolution of such problems. Hence, a Genetic Algorithm (GA) is proposed to find their optimal solution. This algorithm uses th...
متن کاملHopfield Networks in Relevance and Redundancy Feature Selection Applied to Classification of Biomedical High-Resolution Micro-CT Images
We study filter–based feature selection methods for classification of biomedical images. For feature selection, we use two filters — a relevance filter which measures usefulness of individual features for target prediction, and a redundancy filter, which measures similarity between features. As selection method that combines relevance and redundancy we try out a Hopfield network. We experimenta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 13 شماره
صفحات -
تاریخ انتشار 2013