A Unique Human Norovirus Lineage with a Distinct HBGA Binding Interface

نویسندگان

  • Wu Liu
  • Yutao Chen
  • Xi Jiang
  • Ming Xia
  • Yang Yang
  • Ming Tan
  • Xuemei Li
  • Zihe Rao
  • Jacques Le Pendu
چکیده

Norovirus (NoV) causes epidemic acute gastroenteritis in humans, whereby histo-blood group antigens (HBGAs) play an important role in host susceptibility. Each of the two major genogroups (GI and GII) of human NoVs recognizes a unique set of HBGAs through a distinct binding interface that is conserved within a genogroup, indicating a distinct evolutionary path for each genogroup. Here, we characterize a Lewis a (Lea) antigen binding strain (OIF virus) in the GII.21 genotype that does not share the conserved GII binding interface, revealing a new evolution lineage with a distinct HBGA binding interface. Sequence alignment showed that the major residues contributing to the new HBGA binding interface are conserved among most members of the GII.21, as well as a closely related GII.13 genotype. In addition, we found that glycerol inhibits OIF binding to HBGAs, potentially allowing production of cheap antivirals against human NoVs. Taken together, our results reveal a new evolutionary lineage of NoVs selected by HBGAs, a finding that is important for understanding the diversity and widespread nature of NoVs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conservation of Carbohydrate Binding Interfaces — Evidence of Human HBGA Selection in Norovirus Evolution

BACKGROUND Human noroviruses are the major viral pathogens of epidemic acute gastroenteritis. These genetically diverse viruses comprise two major genogroups (GI and GII) and approximately 30 genotypes. Noroviruses recognize human histo-blood group antigens (HBGAs) in a diverse, strain-specific manner. Recently the crystal structures of the HBGA-binding interfaces of the GI Norwalk virus and th...

متن کامل

Norovirus Gastroenteritis, Carbohydrate Receptors, and Animal Models

Noroviruses, an important cause of acute gastroenteritis in humans, have been found to recognize the histo-blood group antigens (HBGAs) as receptors. Different noroviruses revealed different receptor-binding profiles associated with the ABO, secretor, and Lewis HBGA types. Direct evidence of HBGA receptor recognition in viral infection and tropism was obtained from human volunteer challenge stu...

متن کامل

Norovirus Binding to Ligands Beyond Histo-Blood Group Antigens

Histo-blood group antigens (HBGAs) are commonly accepted as the cellular receptors for human norovirus. However, some human noroviruses have been found not to bind any HBGA ligand, suggesting potential additional co-factors. Some ligands have been found to bind noroviruses and have the potential to be additional cellular receptors/attachment factors for human norovirus or inhibitors of the HBGA...

متن کامل

Mechanisms of GII.4 Norovirus Persistence in Human Populations

BACKGROUND Noroviruses are the leading cause of viral acute gastroenteritis in humans, noted for causing epidemic outbreaks in communities, the military, cruise ships, hospitals, and assisted living communities. The evolutionary mechanisms governing the persistence and emergence of new norovirus strains in human populations are unknown. Primarily organized by sequence homology into two major hu...

متن کامل

Binding to histo-blood group antigen-expressing bacteria protects human norovirus from acute heat stress

This study aims to investigate if histo-blood group antigen (HBGA) expressing bacteria have any protective role on human norovirus (NoV) from acute heat stress. Eleven bacterial strains were included, belonging to Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Clostridium difficile, Bifidobacterium adolescentis, and B. longum. HBGA expression of the bacteria as well as binding ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015