Capacity achieving nonbinary LDPC coded non-uniform shaping modulation for adaptive optical communications.

نویسندگان

  • Changyu Lin
  • Ding Zou
  • Tao Liu
  • Ivan B Djordjevic
چکیده

A mutual information inspired nonbinary coded modulation design with non-uniform shaping is proposed. Instead of traditional power of two signal constellation sizes, we design 5-QAM, 7-QAM and 9-QAM constellations, which can be used in adaptive optical networks. The non-uniform shaping and LDPC code rate are jointly considered in the design, which results in a better performance scheme for the same SNR values. The matched nonbinary (NB) LDPC code is used for this scheme, which further improves the coding gain and the overall performance. We analyze both coding performance and system SNR performance. We show that the proposed NB LDPC-coded 9-QAM has more than 2dB gain in symbol SNR compared to traditional LDPC-coded star-8-QAM. On the other hand, the proposed NB LDPC-coded 5-QAM and 7-QAM have even better performance than LDPC-coded QPSK.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advanced GF(3) nonbinary LDPC coded modulation with non-uniform 9-QAM outperforming star 8-QAM

In this paper, we first describe a 9-symbol non-uniform signaling scheme based on Huffman code, in which different symbols are transmitted with different probabilities. By using the Huffman procedure, prefix code is designed to approach the optimal performance. Then, we introduce an algorithm to determine the optimal signal constellation sets for our proposed non-uniform scheme with the criteri...

متن کامل

LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication.

An orbital angular momentum (OAM) based LDPC-coded modulation scheme suitable for use in FSO communication is proposed. We demonstrate that the proposed scheme can operate under strong atmospheric turbulence regime and enable 100 Gb/s optical transmission while employing 10 Gb/s components. Both binary and nonbinary LDPC-coded OAM modulations are studied. In addition to providing better BER per...

متن کامل

Evaluation of four-dimensional nonbinary LDPC-coded modulation for next-generation long-haul optical transport networks.

Leveraging the advanced coherent optical communication technologies, this paper explores the feasibility of using four-dimensional (4D) nonbinary LDPC-coded modulation (4D-NB-LDPC-CM) schemes for long-haul transmission in future optical transport networks. In contrast to our previous works on 4D-NB-LDPC-CM which considered amplified spontaneous emission (ASE) noise as the dominant impairment, t...

متن کامل

Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks.

In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded...

متن کامل

Iterative Equaliser and Ldpc Algorithms Using Space- Time Block Coded over Non-binary Fields Applied to Wireless Channel

The aim of this paper is to propose a new combination of turbo equalisation with Low Density Parity Check (LDPC) both over non-binary fields, concatenated with space time block coded over a wireless channel with QPSK modulation. A detail comparison with other communication methods such as turbo equalisation and binary LDPC decoding is included. This system produces a gain of 2 dB for a 3 10 = B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 24 16  شماره 

صفحات  -

تاریخ انتشار 2016