Convergence Analysis for Eigenvalue Approximations on Triangular Finite Element Meshes

نویسنده

  • Todor D. Todorov
چکیده

The paper is devoted to the eigenvalue problem for a second order strongly elliptic operator. The problem is considered on curved domains, which require interpolated boundary conditions in approximating finite element formulation. The necessary triangulations for solving the eigenvalue problem consists of isoparametric elements of degree n, where n is any integer greater than two. An approximating numerical quadrature eigenvalue problem is investigated. The considered convergence analysis is a crucial point for estimating of the error in approximating eigenvalues. An isoparametric approach is the basic tool for proving the convergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing eigenvalue approximation by gradient recovery on adaptive meshes

Gradient recovery has been widely used for a posteriori error estimates (see Ainsworth & Oden, 2000; Babuška & Strouboulis, 2001; Chen & Xu, 2007; Fierro & Veeser, 2006; Zhang, 2007; Zienkiewicz et al., 2005; Zienkiewicz & Zhu, 1987, 1992a,b). Recently, it has been employed to enhance the eigenvalue approximations by the finite-element method under certain mesh conditions (see Naga et al., 2006...

متن کامل

Postprocessing and Higher Order Convergence of Stabilized Finite Element Discretizations of the Stokes Eigenvalue Problem

In this paper, the stabilized finite element method based on local projection is applied to discretize the Stokes eigenvalue problems and the corresponding convergence analysis is given. Furthermore, we also use a method to improve the convergence rate for the eigenpair approximations of the Stokes eigenvalue problem. It is based on a postprocessing strategy that contains solving an additional ...

متن کامل

Solving elliptic eigenvalue problems on polygonal meshes using discontinuous Galerkin composite finite element methods

In this paper we introduce a discontinuous Galerkin method on polygonal meshes. This method arises from the Discontinuous Galerkin Composite Finite Element Method (DGFEM) for source problems on domains with micro-structures. In the context of the present paper, the flexibility of DGFEM is applied to handle polygonal meshes. We prove the a priori convergence of the method for both eigenvalues an...

متن کامل

Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique

Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...

متن کامل

Postprocessing and Higher Order Convergence of Mixed Finite Element Approximations of Biharmonic Eigenvalue Problems

A new procedure for accelerating the convergence of mixed finite element approximations of the eigenpairs and of the biharmonic operator is proposed. It is based on a postprocessing technique that involves an additional solution of a source problem on an augmented finite element space. This space could be obtained either by substantially refining the grid, the two-grid method, or by using the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004