Likelihood Ratio Tests for Goodness-of-Fit of a Nonlinear Regression Model
نویسندگان
چکیده
We propose likelihood and restricted likelihood ratio tests for goodness-of-fit of nonlinear regression. The first order Taylor approximation around the MLE of the regression parameters is used to approximate the null hypothesis and the alternative is modeled nonparametrically using penalized splines. The exact finite sample distribution of the test statistics is obtained for the linear model approximation and can be easily simulated. We recommend using the restricted likelihood instead of the likelihood ratio test because restricted maximum likelihood estimates are not as severely biased as the maximum likelihood estimates in the penalized splines framework. Short title: LRTs for nonlinear regression
منابع مشابه
An empirical likelihood ratio based goodness-of-fit test for Inverse Gaussian distributions
The Inverse Gaussian (IG) distribution is commonly introduced to model and examine right skewed data having positive support. When applying the IG model, it is critical to develop efficient goodness-of-fit tests. In this article, we propose a new test statistic for examining the IG goodness-of-fit based on approximating parametric likelihood ratios. The parametric likelihood ratio methodology i...
متن کاملThe Comparison Between Goodness of Fit Tests for Copula
Copula functions as a model can show the relationship between variables. Appropriate copula function for a specific application is a function that shows the dependency between data in a best way. Goodness of fit tests theoretically are the best way in selection of copula function. Different ways of goodness of fit for copula exist. In this paper we will examine the goodness of fit test...
متن کاملOn the Canonical-Based Goodness-of-fit Tests for Multivariate Skew-Normality
It is well-known that the skew-normal distribution can provide an alternative model to the normal distribution for analyzing asymmetric data. The aim of this paper is to propose two goodness-of-fit tests for assessing whether a sample comes from a multivariate skew-normal (MSN) distribution. We address the problem of multivariate skew-normality goodness-of-fit based on the empirical Laplace tra...
متن کاملAn empirical likelihood goodness-of-fit test for time series
Standard goodness-of-fit tests for a parametric regression model against a series of nonparametric alternatives are based on residuals arising from a fitted model.When a parametric regression model is compared with a nonparametric model, goodness-of-fit testing can be naturally approached by evaluating the likelihood of the parametric model within a nonparametric framework. We employ the empiri...
متن کاملStatistical Tests for Comparing Possibly Misspecified and Nonnested Models.
Model selection criteria (MSC) involves selecting the model with the best estimated goodness-of-fit to the data generating process. Following the method of Vuong (1989), a large sample Model Selection Test (MST), is introduced that can be used in conjunction with most existing MSC procedures to decide if the estimated goodness-of-fit for one model is significantly different from the estimated g...
متن کامل