Envelope gene evolution and HIV-1 neuropathogenesis.
نویسندگان
چکیده
In the era of combined antiretroviral therapy (cART), HIV-associated neurocognitive disorders (HAND) account for 40 to 56% of all HIV+ cases. During the acute stage of HIV-1 infection (<6 months), the virus invades and replicates within the central nervous system (CNS). Compared to peripheral tissues, the local CNS cell population expresses distinct levels of chemokine receptors, which levels exert selective pressure on the invading virus. HIV-1 envelope (env) sequences recovered from the brains and cerebrospinal fluid (CSF) of neurocognitively impaired HIV+ subjects often display higher nucleotide variability as compared to non-impaired HIV+ subjects. Specifically, env evolution provides HIV-1 with the strategies to evade host immune response, to reduce chemokine receptor dependence, to increase co-receptor binding efficiency, and to potentiate neurotoxicity. The evolution of env within the CNS leads to changes that may result in the emergence of novel isolates with neurotoxic and neurovirulent features. However, whether specific factors of HIV-1 evolution lead to the emergence of neurovirulent and neurotropic isolates remains ill-defined. HIV-1 env evolution is an ongoing phenomenon that occurs independently of neurological and neurocognitive disease severity; thus HIV env evolution may play a pivotal and reciprocal role in the etiology of HAND. Despite the use of cART, the reactivation of latent viral reservoirs represents a clinical challenge because of the replenishment of the viral pool that may subsequently lead to persistent infection. Therefore, gaining a more complete understanding of how HIV-1 env evolves over the course of the disease should be considered for the development of future therapies aimed at controlling CNS burden, diminishing persistent viremia, and eradicating viral reservoirs. Here we review the current literature on the role of HIV-1 env evolution in the setting of HAND disease progression and on the impact of cART on the dynamics of viral evolution.
منابع مشابه
Phylodynamic analysis of human immunodeficiency virus type 1 in distinct brain compartments provides a model for the neuropathogenesis of AIDS.
"Phylodynamic" analysis combines various statistical procedures that can be used to correlate the epidemiological and evolutionary behavior of viral pathogens with the immune system of the host. We utilized this approach to examine human immunodeficiency virus type 1 (HIV-1) gp120 envelope DNA sequences (V1, V2, and V3) isolated from different brain compartments of a T-cell-depleted patient dia...
متن کاملLongitudinal Analysis of Cerebrospinal Fluid and Plasma HIV-1 Envelope Sequences Isolated From a Single Donor with HIV Asymptomatic Neurocognitive Impairment.
OBJECTIVE Combined antiretroviral treatment (cART) has changed the clinical presentation of HIV-associated neurocognitive disorders (HAND) to that of the milder forms of the disease. Asymptomatic neurocognitive impairment (ANI) is now more prevalent and is associated with increased morbidity and mortality risk in HIV-1-infected people. HIV-1 envelope (env) genetic heterogeneity has been detecte...
متن کاملMolecular Mechanisms of Neurodegenerative Diseases Induced by Human Retroviruses: A Review.
PROBLEM STATEMENT: Infection with retroviruses such as human immunodeficiency virus type 1 (HIV-1) and human T cell leukemia virus type 1 (HTLV-1) have been shown to lead to neurodegenerative diseases such as HIV-associated dementia (HAD) or neuroAIDS and HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), respectively. APPROACH: HIV-1-induced neurologic disease is associated w...
متن کاملCD4-independent infection of astrocytes by human immunodeficiency virus type 1: requirement for the human mannose receptor.
Human immunodeficiency virus type 1 (HIV-1) infection occurs in the central nervous system and causes a variety of neurobehavioral and neuropathological disorders. Both microglia, the residential macrophages in the brain, and astrocytes are susceptible to HIV-1 infection. Unlike microglia that express and utilize CD4 and chemokine coreceptors CCR5 and CCR3 for HIV-1 infection, astrocytes fail t...
متن کاملChemokine receptors and mechanisms of cell death in HIV neuropathogenesis.
Several chemokine receptors are used as coreceptors for HIV-1 entry in the central nervous system (CNS). CCR5 is the major coreceptor together with CD4 for HIV-1 infection of microglia, the major target cells for HIV-1 infection in the CNS. CXCR4 and CCR3 are also expressed on microglia and can mediate infection by certain HIV-1 isolates but at lower efficiency than CCR5. Additional chemokine c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroinfectious diseases
دوره 6 Suppl 2 شماره
صفحات -
تاریخ انتشار 2015