Screening of intact yeasts and cell extracts to reduce Scrapie prions during biotransformation of food waste

نویسندگان

  • David Huyben
  • Sofia Boqvist
  • Volkmar Passoth
  • Lena Renström
  • Ulrika Allard Bengtsson
  • Olivier Andréoletti
  • Anders Kiessling
  • Torbjörn Lundh
  • Ivar Vågsholm
چکیده

Yeasts can be used to convert organic food wastes to protein-rich animal feed in order to recapture nutrients. However, the reuse of animal-derived waste poses a risk for the transmission of infectious prions that can cause neurodegeneration and fatality in humans and animals. The aim of this study was to investigate the ability of yeasts to reduce prion activity during the biotransformation of waste substrates-thereby becoming a biosafety hurdle in such a circular food system. During pre-screening, 30 yeast isolates were spiked with Classical Scrapie prions and incubated for 72 h in casein substrate, as a waste substitute. Based on reduced Scrapie seeding activity, waste biotransformation and protease activities, intact cells and cell extracts of 10 yeasts were further tested. Prion analysis showed that five yeast species reduced Scrapie seeding activity by approximately 1 log10 or 90%. Cryptococcus laurentii showed the most potential to reduce prion activity since both intact and extracted cells reduced Scrapie by 1 log10 and achieved the highest protease activity. These results show that select forms of yeast can act as a prion hurdle during the biotransformation of waste. However, the limited ability of yeasts to reduce prion activity warrants caution as a sole barrier to transmission as higher log reductions are needed before using waste-cultured yeast in circular food systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biotransformation of Aromatic Aldehydes by Cell Cultures of Peganum harmala L. and Silybum marianum (L.) Gaertn.

Many aldehydes are important components of natural flavours. They are used in food, cosmetic, and biomedical industries in large amounts. Plant cells or microorganisms carry out their production by biotransformation, which is one of the biotechnological methods that allow them to be defined as 'natural'. Cell cultures of Silybum marianum and Peganum harmala have been studied with a view to in...

متن کامل

Biotransformation of Aromatic Aldehydes by Cell Cultures of Peganum harmala L. and Silybum marianum (L.) Gaertn.

Many aldehydes are important components of natural flavours. They are used in food, cosmetic, and biomedical industries in large amounts. Plant cells or microorganisms carry out their production by biotransformation, which is one of the biotechnological methods that allow them to be defined as 'natural'. Cell cultures of Silybum marianum and Peganum harmala have been studied with a view to in...

متن کامل

Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication.

Transgenic (Tg) mice expressing both Syrian hamster (Ha) and mouse (Mo) prion protein (PrP) genes were used to probe the mechanism of scrapie prion replication. Four Tg lines expressing HaPrP exhibited distinct incubation times ranging from 48 to 277 days, which correlated inversely with HaPrP mRNA and HaPrPC. Bioassays of Tg brain extracts showed that the prion inoculum dictates which prions a...

متن کامل

Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins.

Scrapie and Creutzfeldt-Jakob disease are transmissible, degenerative neurological diseases caused by prions. Considerable evidence argues that prions contain protease-resistant sialoglycoproteins, designated PrPSc, encoded by a cellular gene. The prion protein (PrP) gene also encodes a normal cellular protein designated PrPC. We established clonal cell lines which support the replication of mo...

متن کامل

Biotransformation of salicylaldehyde to salicin using Varthemia persica cell suspension cultures

         Cell cultures of Varthemia persica DC. have been studied to evaluate their abilities in biotransformation of aromatic and aliphatic precursors. V. Persica (Asteraceae) is an aromatic plant growing in Iran. V. persica contain different terpens but its cell culture does not posses these compounds. Callus cultures of V. persica was established ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2018