Three-region inequalities for the second order elliptic equation with discontinuous coefficients and size estimate

نویسندگان

  • E. Francini
  • C.-L. Lin
  • S. Vessella
  • J.-N. Wang
چکیده

In this paper, we would like to derive a quantitative uniqueness estimate, the three-region inequality, for the second order elliptic equation with jump discontinuous coefficients. The derivation of the inequality relies on the Carleman estimate proved in our previous work [5]. We then apply the three-region inequality to study the size estimate problem with one boundary measurement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients

This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...

متن کامل

Cordes conditions and some alternatives for parabolic equations and discontinuous diffusion ∗

We consider parabolic equations in nondivergent form with discontinuous coefficients at higher derivatives. Their investigation is most complicated because, in general, in the case of discontinuous coefficients, the uniqueness of a solution for nonlinear parabolic or elliptic equations can fail, and there is no a priory estimate for partial derivatives of a solution. There are some conditions t...

متن کامل

Neumann-neumann Methods for a Dg Discretization of Elliptic Problems with Discontinuous Coefficients on Geometrically Nonconforming Substructures

A discontinuous Galerkin discretization for second order elliptic equations with discontinuous coefficients in 2-D is considered. The domain of interest Ω is assumed to be a union of polygonal substructures Ωi of size O(Hi). We allow this substructure decomposition to be geometrically nonconforming. Inside each substructure Ωi, a conforming finite element space associated to a triangulation Thi...

متن کامل

Discontinuous Galerkin Methods for Solving Elliptic Variational Inequalities

We study discontinuous Galerkin methods for solving elliptic variational inequalities, of both the first and second kinds. Analysis of numerous discontinuous Galerkin schemes for elliptic boundary value problems is extended to the variational inequalities. We establish a priori error estimates for the discontinuous Galerkin methods, which reach optimal order for linear elements. Results from so...

متن کامل

Adaptive finite element methods for elliptic equations with non-smooth coefficients

We consider a second-order elliptic equation with discontinuous or anisotropic coefficients in a bounded twoor three dimensional domain, and its finiteelement discretization. The aim of this paper is to prove some a priori and a posteriori error estimates in an appropriate norm, which are independent of the variation of the coefficients. Résumé: Nous considérons une équation elliptique du secon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015