Response surface methodology using Gaussian processes : towards optimizing the trans - stilbene epoxidation over Co 2 + - NaX catalysts

نویسندگان

  • Qinghu Tang
  • Ying Bin Lau
  • Shuangquan Hu
  • Wenjin Yan
  • Yanhui Yang
  • Tao Chen
چکیده

Response surface methodology (RSM) relies on the design of experiments and empirical modelling techniques to find the optimum of a process when the underlying fundamental mechanism of the process is largely unknown. This paper proposes an iterative RSM framework, where Gaussian process (GP) regression models are applied for the approximation of the response surface. GP regression is flexible and capable of modelling complex functions, as opposed to the restrictive form of the polynomial models that are used in traditional RSM. As a result, GP models generally attain high accuracy of approximating the response surface, and thus provide great chance of identifying the optimum. In addition, GP is capable of providing both prediction mean and variance, the latter being a measure of the modelling uncertainty. Therefore, this uncertainty can be accounted for within the optimization problem, and thus the process optimal conditions are robust against the modelling uncertainty. The developed method is successfully applied to the optimization of trans-stilbene conversion in the epoxidation of trans-stilbene over Co-NaX (cobalt ion-exchanged faujasite zeolites) catalysts using molecular oxygen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co6(μ3-OH)6 cluster based coordination polymer as an effective heterogeneous catalyst for aerobic epoxidation of alkenes.

A new hexaprismane Co(II)6(μ3-OH)6 cluster-based three-dimensional coordination polymer ({Co(μ3-OH)(HCOO)0.72(CH3COO)0.28}n, Co6-CP) was successfully synthesized and characterized with single-crystal XRD, IR spectra, TGA spectra and elemental analysis. Co6-CP was used as an effective heterogeneous catalyst for the aerobic epoxidation of various alkenes. For the catalytic epoxidation of trans-st...

متن کامل

Synthesis of Binary Ti-Si Mixed Oxides Nanoparticles with Rutile Structure as Selective Catalyst for Epoxidation of Alkenes

The nanoparticles of Ti-Si mixed oxides (NTSO) with Rutile structure were prepared by sol-gel method in a mixture of alcohol and water as solvent. The solid product was characterized by XRD, FTIR, SEM, TEM, UV, TGA and laser Raman spectroscopy. The catalytic activity of NTSO (5-10 nm) was investigated in the epoxidation of cis stilbene, trans stilbene, and norbornene by using oxidants such as t...

متن کامل

Aerobic methylcyclohexane-promoted epoxidation of stilbene over gold nanoparticles supported on Gd-doped titania.

Aerobic partial oxidations of alkanes and alkenes are important processes of the petrochemical industry. The radical mechanisms involved can be catalyzed by soluble salts of transition metals (Co, Cu, Mn...). We show here that the model methylcyclohexane/stilbene co-oxidation reaction can be efficiently catalyzed at lower temperature by supported gold nanoparticles. The support has little influ...

متن کامل

Statistical Optimization of Liquid Phase Oxidation of Benzyl Alcohol over Efficient Cobalt Promoted Vanadyl Pyrophosphate Catalysts by Box-Behnken Design

Vanadium phosphorus oxides (VPO) has been applied as a heterogeneous catalyst in gas phase oxidation reactions and its application is very limited in liquid phase. In this study a series of cobalt-doped vanadium phosphorus oxides (VPO-Co) catalysts with different loading of Co (0.01-1.0 mol ratio of Co/V) were prepared. Oxidation of benzyl alcohol was studied in the liquid phase over VPO and VP...

متن کامل

Epoxidation of stilbene using supported gold nanoparticles: cumyl peroxyl radical activation at the gold nanoparticle surface.

The catalytic epoxidation of cis-stilbene using cumene as a solvent in the presence of supported gold nanoparticles (AuNP) yields a mixture of cis and trans-stilbene oxides. EPR and product distribution studies support a new mechanistic proposal where oxygen centred radicals activate the AuNP surface and form active surface oxygen species responsible for the epoxidation products.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009