Arginine Vasopressin Alters Both Spontaneous and Phase-Locked Synaptic Inputs to Airway Vagal Preganglionic Neuron via Activation of V1a Receptor: Insights into Stress-Related Airway Vagal Excitation
نویسندگان
چکیده
The airway vagal preganglionic neurons (AVPNs) in the external formation of the nucleus ambiguus (eNA) play a major role in the vagal control of tracheobronchial smooth muscle tone and maintenance of airway resistance. The eNA receives vasopressinergic projection from the hypothalamic paraventricular nucleus (PVN), the key node for the genesis of psychological stress. Since airway vagal excitation is reportedly to be associated with the psychological stress-induced/exacerbated airway hyperresponsiveness in asthmatics, arginine vasopressin (AVP) might be involved in stress-related airway vagal excitation. However, this possibility has not been validated. This study aimed to test whether and how AVP regulates AVPNs. In rhythmically active medullary slices of newborn rats, retrogradely labeled AVPNs were identified as inspiratory-activated and inspiratory-inhibited AVPNs (IA- and II-AVPNs) using patch-clamp techniques according to their inspiratory-related firing behavior and synaptic activities. The results show that under current clamp, AVP depolarized both IA- and II-AVPNs, and significantly increased their spontaneous firing rate. Under voltage clamp, AVP elicited a slow inward current, and significantly increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in both types of AVPNs. In addition, AVP significantly enhanced the phase-locked excitatory inspiratory inward current in inspiratory-activated airway vagal preganglionic neurons (IA-AVPNs), but significantly suppressed the phase-locked inhibitory inspiratory outward current in II-AVPNs. In both types AVPNs, AVP significantly increased the frequency and amplitude of pharmacologically isolated spontaneous GABAergic and glycinergic inhibitory postsynaptic currents (IPSCs). All of the AVP-induced effects were prevented by SR49059, an antagonist of V1a receptors, but unaffected by SSR149415, an antagonist of V1b receptors. AVP did not cause significant changes in the miniature excitatory postsynaptic currents (mEPSCs), miniature inhibitory postsynaptic currents (mIPSCs) and membrane input resistance of either type of AVPNs. These results demonstrate that AVP, via activation of V1a receptors, enhanced the spontaneous excitatory and inhibitory inputs similarly in the two types of AVPNs, but differentially altered their phase-locked inspiratory excitatory and inhibitory inputs. The overall effects of AVP are excitatory in both types AVPNs. These results suggest that increased central AVP release may be involved in the stress-induced augmentation of airway vagal activity, and, consequently, the induction or exacerbation of some airway diseases.
منابع مشابه
Activation of α1-adrenoceptors facilitates excitatory inputs to medullary airway vagal preganglionic neurons.
In mammals, the neural control of airway smooth muscle is dominated by a subset of airway vagal preganglionic neurons in the ventrolateral medulla. These neurons are physiologically modulated by adrenergic/noradrenergic projections, and weakened α₂-adrenergic inhibition of them is indicated to participate in the pathogenesis and exacerbation of asthma. This study tests whether these neurons are...
متن کاملChemical profile of vagal preganglionic motor cells innervating the airways in ferrets: the absence of noncholinergic neurons.
In ferrets, we investigated the presence of choline acetyltransferase (ChAT), vasoactive intestinal peptide (VIP), and markers for nitric oxide synthase (NOS) in preganglionic parasympathetic neurons innervating extrathoracic trachea and intrapulmonary airways. Cholera toxin beta-subunit, a retrograde axonal transganglionic tracer, was used to identify airway-related vagal preganglionic neurons...
متن کاملThe excitatory amino acid glutamate mediates reflexly increased tracheal blood flow and airway submucosal gland secretion.
In six decerebrated and in eight alpha-chloralose anesthetized, paralyzed and mechanically ventilated beagle dogs, we have studied involvement of glutamate and glutamate receptors in transmission of excitatory inputs from the airway sensory receptors to the nucleus tractus solitarius and from this site to airway-related vagal preganglionic cells that regulate the tracheal circulation and the su...
متن کاملNO differentially regulates neurotransmission to premotor cardiac vagal neurons in the nucleus ambiguus.
NO is involved in the neural control of heart rate, and NO synthase expressing neurons and terminals have been localized in the nucleus ambiguus where parasympathetic cardiac vagal preganglionic neurons are located; however, little is known about the mechanisms by which NO alters the activity of premotor cardiac vagal neurons. This study examines whether the NO donor sodium nitroprusside ([SNP]...
متن کاملProcessing of central and reflex vagal drives by rat cardiac ganglion neurones: an intracellular analysis.
Cardiac vagal tone is an important indicator of cardiovascular health, and its loss is an independent risk factor for arrhythmias and mortality. Several studies suggest that this loss of vagal tone can occur at the cardiac ganglion but the factors affecting ganglionic transmission in vivo are poorly understood. We have employed a novel approach allowing intracellular recordings from functionall...
متن کامل