Symmetric Bayesian Multinomial Probit Models

نویسندگان

  • Lane F. Burgette
  • P. Richard Hahn
چکیده

Standard Bayesian multinomial probit (MNP) models that are fit using different base categories can give different predictions. Therefore, we propose the symmetric MNP model, which does not make reference to a base category. To achieve this, we employ novel sum-to-zero identifying restrictions on the latent utilities and regression coefficients that define the model. This results in a model whose prior and likelihood are symmetric with respect to relabeling the outcome categories. As part of this model, we define a prior on the space of symmetric, positive-semidefinite matrices that allows for an efficient marginal data augmentation Gibbs sampling algorithm. We demonstrate our methods on two consumerchoice datasets where different base categories give different posterior inferences. The symmetric MNP sensibly gives predictions that are between those of the differing standard MNP specifications, while improving mixing in the Gibbs sampler. We also propose a symmetric MNP that assumes independent but heteroscedastic errors, which may be a useful compromise between a model that assumes independence of irrelevant alternatives, and one that allows arbitrary substitution patterns.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

Working Paper Series Categorical Data Categorical Data

Categorical outcome (or discrete outcome or qualitative response) regression models are models for a discrete dependent variable recording in which of two or more categories an outcome of interest lies. For binary data (two categories) probit and logit models or semiparametric methods are used. For multinomial data (more than two categories) that are unordered, common models are multinomial and...

متن کامل

Discrete Choice Models Based on the Scale Mixture of Multivariate Normal Distributions

A rich class of parametric models is proposed for discrete choice data based on the scale mixture of multivariate normal distributions. The multinomial probit model is a special case in the class. The new models can be implemented in a Bayesian framework without much difficulty because of their special connections to the multinomial probit model. A Gibbs sampler with data augmentation is used t...

متن کامل

Diagonal Orthant Multinomial Probit Models

Bayesian classification commonly relies on probit models, with data augmentation algorithms used for posterior computation. By imputing latent Gaussian variables, one can often trivially adapt computational approaches used in Gaussian models. However, MCMC for multinomial probit (MNP) models can be inefficient in practice due to high posterior dependence between latent variables and parameters,...

متن کامل

Bayesian Auxiliary Variable Models for Binary and Multinomial Regression

In this paper we discuss auxiliary variable approaches to Bayesian binary and multinomial regression. These approaches are ideally suited to automated Markov chain Monte Carlo simulation. In the first part we describe a simple technique using joint updating that improves the performance of the conventional probit regression algorithm. In the second part we discuss auxiliary variable methods for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010