Dimension Splitting for Time Dependent Operators

نویسندگان

  • Eskil Hansen
  • Alexander Ostermann
  • ALEXANDER OSTERMANN
چکیده

In this paper we are concerned with the convergence analysis of splitting methods for nonautonomous abstract evolution equations. We introduce a framework that allows us to analyze the popular Lie, Peaceman– Rachford and Strang splittings for time dependent operators. Our framework is in particular suited for analyzing dimension splittings. The influence of boundary conditions is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domain decomposition methods with overlapping subdomains for time-dependent problems

Domain decomposition (DD) methods for solving time-dependent problems can be classified by (i) the method of domain decomposition used, (ii) the choice of decomposition operators (exchange of boundary conditions), and (iii) the splitting scheme employed. To construct homogeneous numerical algorithms, overlapping subdomain methods are preferable. Domain decomposition is associated with the corre...

متن کامل

Stiff convergence of force-gradient operator splitting methods

We consider force-gradient, also called modified potential, operator splitting methods for problems with unbounded operators. We prove that force-gradient operator splitting schemes retain their classical orders of accuracy for time-dependent partial differential equations of parabolic or Schrödinger type, provided that the solution is sufficiently regular.

متن کامل

Dimension splitting for quasilinear parabolic equations

In the current paper, we derive a rigorous convergence analysis for a broad range of splitting schemes applied to abstract nonlinear evolution equations, including the Lie and Peaceman–Rachford splittings. The analysis is in particular applicable to (possibly degenerate) quasilinear parabolic problems and their dimension splittings. The abstract framework is based on the theory of maximal dissi...

متن کامل

Additive schemes (splitting schemes) for some systems of evolutionary equations

On the basis of additive schemes (splitting schemes) we construct efficient numerical algorithms to solve approximately the initial-boundary value problems for systems of time-dependent partial differential equations (PDEs). In many applied problems the individual components of the vector of unknowns are coupled together and then splitting schemes are applied in order to get a simple problem fo...

متن کامل

Testing Weighted Splitting Schemes on a One-Column Transport-Chemistry Model

In many transport-chemistry models, a huge system of ODE's of the advection-diffusion-reaction type has to be integrated in time. Typically, this is done with the help of operator splitting. Operator splitting is attractive for complex large-scale transport-chemistry models because it allows to handle different processes separately in different parts of the computer program. Rosenbrock schemes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009