R-HybrID: Evolution of Agent Controllers with a Hybrisation of Indirect and Direct Encodings
نویسندگان
چکیده
Neuroevolution, the optimisation of artificial neural networks (ANNs) through evolutionary computation, is a promising approach to the synthesis of controllers for autonomous agents. Traditional neuroevolution approaches employ direct encodings, which are limited in their ability to evolve complex or large-scale controllers because each ANN parameter is independently optimised. Indirect encodings, on the other hand, facilitate scalability because each gene can be reused multiple times to construct the ANN, but are biased towards regularity and can become ineffective when irregularity is required. To address such limitations, we introduce a novel algorithm called R-HybrID. In R-HybrID, controllers have both indirectly encoded and directly encoded structure. Because the portion of structure following a specific encoding is under evolutionary control, R-HybrID can automatically find an appropriate encoding combination for a given task. We assess the performance of R-HybrID in three tasks: (i) a high-dimensional visual discrimination task that requires geometric principles to be evolved, (ii) a challenging benchmark for modular robotics, and (iii) a memory task that has proven difficult for current algorithms because it requires effectively accumulating neural structure for cognitive behaviour to emerge. Our results show that R-HybrID consistently outperforms three stateof-the-art neuroevolution algorithms, and effectively evolves complex controllers and behaviours.
منابع مشابه
HybrID: A Hybridization of Indirect and Direct Encodings for Evolutionary Computation
Evolutionary algorithms typically use direct encodings, where each element of the phenotype is specified independently in the genotype. Because direct encodings have difficulty evolving modular and symmetric phenotypes, some researchers use indirect encodings, wherein one genomic element can influence multiple parts of a phenotype. We have previously shown that HyperNEAT, an indirect encoding, ...
متن کاملImproving HybrID: How to best combine indirect and direct encoding in evolutionary algorithms
Many challenging engineering problems are regular, meaning solutions to one part of a problem can be reused to solve other parts. Evolutionary algorithms with indirect encoding perform better on regular problems because they reuse genomic information to create regular phenotypes. However, on problems that are mostly regular, but contain some irregularities, which describes most real-world probl...
متن کاملUsing Indirect Encoding of Multiple Brains to Produce Multimodal Behavior
An important challenge in neuroevolution is to evolve complex neural networks with multiple modes of behavior. Indirect encodings can potentially answer this challenge. Yet in practice, indirect encodings do not yield effective multimodal controllers. Thus, this paper introduces novel multimodal extensions to HyperNEAT, a popular indirect encoding. A previous multimodal HyperNEAT approach calle...
متن کاملImproving the velocity tracking of cruise control system by using adaptive methods
Accurate and correct performance of controller in cruise control systems is important. Hence, in such systems, controller should optimize itself against noise and probable changes in system dynamic. As a matter of fact, in this article three approaches have been conducted to-ward this purpose: MIT, direct estimation and indirect estimation. These approaches are used as controllers to track refe...
متن کاملAn Improved Tabu Search Algorithm for Job Shop Scheduling Problem Trough Hybrid Solution Representations
Job shop scheduling problem (JSP) is an attractive field for researchers and production managers since it is a famous problem in many industries and a complex problem for researchers. Due to NP-hardness property of this problem, many meta-heuristics are developed to solve it. Solution representation (solution seed) is an important element for any meta-heuristic algorithm. Therefore, many resear...
متن کامل