From descriptors to predicted properties: experimental design by using applicability domain estimation.

نویسندگان

  • Stefan Brandmaier
  • Sergii Novotarskyi
  • Iurii Sushko
  • Igor V Tetko
چکیده

The importance of reliable methods for representative sub-sampling in terms of experimental design and risk assessment within the European Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) system is crucial. We developed experimental design approaches, by utilising predicted properties and the 'distance to model' parameter, to estimate the benefits of certain compounds to the quality of a resulting model. A statistical evaluation of four regression data sets and one classification data set showed that the adaptive concept of iteratively refining the representation of the chemical space contributes to a more efficient and more reliable selection in comparison to traditional approaches. The evaluation of compounds with regard to the uncertainty and the correlation of prediction is beneficial, and in particular, for regression data sets of sufficient size, whereas the use of predicted properties to define the chemical space is beneficial for classification models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Structure Activity Relationship Analysis of Coumarins as Free Radical Scavengers by Genetic Function Algorithm

The antioxidant properties of coumarin derivatives using the 2,2ˈ -diphenyl-1- picrylhydrazyl (DPPH) radical scavenging assay were investigated by the application of Quantitative Structure Activity Relationship (QSAR) studies. The molecular structures were optimized and submitted for the generation of quantum chemical and molecular descriptors. Genetic Function Algorithm (GFA) was employed in m...

متن کامل

Kernel-based estimation of the applicability domain of QSAR models

Machine learning techniques have become a valuable tool to assess molecular properties without the need of in vitro experiments. Most of these methods do not give any information if a molecule that is predicted can be sufficiently described by the knowledge contained in the model. Thus, the estimation of the reliability of a model-based prediction is an important question in machine learning ba...

متن کامل

QSPR study on benzene derivatives to some physico-chemical properties by using topological indices

QSPR study on benzene derivatives have been made using recently introduced topological methodology. In this study the relationship between the Randic' (x'), Balaban (J), Szeged (Sz),Harary (H), Wiener (W), HyperWiener and Wiener Polarity (WP) to the thermal energy (Eth), heat capacity (CV) and entropy (S) of benzene derivatives is represented. Physicochemical properties are taken from the quant...

متن کامل

Quantitative Modeling for Prediction of Critical Temperature of Refrigerant Compounds

The quantitative structure-property relationship (QSPR) method is used to develop the correlation between structures of refrigerants (198 compounds) and their critical temperature. Molecular descriptors calculated from structure alone were used to represent molecular structures. A subset of the calculated descriptors selected using a genetic algorithm (GA) was used in the QSPR model development...

متن کامل

An approach to determining applicability domains for QSAR group contribution models: an analysis of SRC KOWWIN.

QSAR model predictions are most reliable if they come from the models applicability domain. The Setubal Workshop report provides a conceptual guidance for defining a (Q)SAR applicability domain. However, an operational definition is necessary for applying this guidance in practice. It should also permit the design of an automatic (computerised) procedure for determining a models applicability d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Alternatives to laboratory animals : ATLA

دوره 41 1  شماره 

صفحات  -

تاریخ انتشار 2013