Silica/titania sandwich-like mesoporous nanosheets embedded with metal nanoparticles templated by hyperbranched poly(ether amine) (hPEA).

نویسندگان

  • Bing Yu
  • Xuesong Jiang
  • Jie Yin
چکیده

We here demonstrated a novel square silica/titania mesoporous nanosheet which was prepared with hyperbranched poly(ether amine) nanosheets (hPEA-NSs) as a template. TEM and SEM images reveal that the obtained nanosheets possess a large aspect ratio with the average edge length of 1-2 μm and thickness of ~40 nm, respectively. Various metal nanoparticles such as gold, silver, and platinum can be embedded into these nanosheets with hPEA-NSs decorated with the corresponding nanoparticles as templates. These nanosheets possess a sandwich-like structure, which is comprised of amorphous SiO2 as the inner layer, and the anatase TiO2 as the outer layer determined by a cross-sectional STEM image and EDS mapping. Meanwhile, the obtained nanosheets are mesoporous with a high surface area (~429 m(2) g(-1)), and the SiO2 inner layer can be removed by chemical etching with NaOH solution to obtain anatase TiO2 nanosheet-like boxes embedded with gold nanoparticles (AuNPs). The photodegradation of Methyl Orange (MO) by the obtained nanosheets can be enhanced by the embedding of AuNPs owing to the localized surface plasmon resonance (LSPR) effect from AuNPs. The preparation of a silica/titania mesoporous nanosheet with hPEA-NSs as template is believed to provide a convenient and general method to produce various square inorganic mesoporous nanosheets with a large aspect ratio between edge length and thickness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Responsive hybrid nanosheets of hyperbranched poly(ether amine) as a 2D-platform for metal nanoparticles.

Hybrid nanosheets of hyperbranched poly(ether amine) are demonstrated as a novel 2D-platform for metal nanoparticles, which makes metal nanoparticles transfer reversibly between oil and water phases.

متن کامل

Self-arrangement of nanoparticles toward crystalline metal oxides with high surface areas and tunable 3D mesopores.

We demonstrate a new design concept where the interaction between silica nanoparticles (about 1.5 nm in diameter) with titania nanoparticles (anatase, about 4 nm or 6 nm in diameter) guides a successful formation of mesoporous titania with crystalline walls and controllable porosity. At an appropriate solution pH (~1.5, depending on the deprotonation tendencies of two types of nanoparticles), t...

متن کامل

All-inorganic core-shell silica-titania mesoporous colloidal nanoparticles showing orthogonal functionality

Colloidal mesoporous silica (CMS) nanoparticles with a thin titania-enriched outer shell showing a spatially resolved functionality were synthesized by a delayed co-condensation approach. The titaniashell can serve as a selective nucleation site for the growth of nanocrystalline anatase clusters. These fully inorganic pure silica-core titania-enriched shell mesoporous nanoparticles show orthogo...

متن کامل

Direct coating of mesoporous titania on CTAB-capped gold nanorods.

We demonstrate a CTAB-templated approach towards direct coating of mesoporous titania on gold nanorods in aqueous solutions. The formation of the mesoporous shell is found to be closely correlated with CTAB concentration and the amount of the titania precursor. This approach can be readily extended to form mesoporous titania shells on other CTAB-capped nanoparticles.

متن کامل

Dynamic control of the location of nanoparticles in hybrid co-assemblies.

We herein demonstrated an approach to control the spatial distribution of components in hybrid microspheres. Hybrid core-shell structured microspheres (CSMs) prepared through co-assembly were used as starting materials, which are comprised of anthracene-ended hyperbranched poly(ether amine) (AN-hPEA) in the shell and crystallized anthracene containing polyhedral oligomer silsesquioxane (AN-POSS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 5 12  شماره 

صفحات  -

تاریخ انتشار 2013