Collinearity between the Shapley value and the egalitarian division rules for cooperative games

نویسنده

  • Irinel Dragan
چکیده

For each cooperative n-person game v and each h 9 { 1, 2 . . . . . n !, let v h be the average worth of coalitions of size h and v~ the average worth of coalitions of size h which do not contain player is N. The paper introduces the notion of a proportional average worth game (or PAWgame), i.e., the zero-normalized game v for which there exist numbers ch 9 ~ such that D,-v~=ch (vn_l-vi_]) for all h 9 {2, 3 . . . . . n 1 }, and is N. The notion of average worth is used to prove a formula for the Shapley value of a PAWgame. It is shown that the Shapley value, the value representing the center of the imputation set, the egalitarian nonseparable contribution value and the egalitarian non-average contribution value of a PAW-game are collinear. The class of PAW-games contains strictly the class of k-coalitional games possessing the collinearity property discussed by Driessen and Funaki (1991). Finally, it is illustrated that the unanimity games and the landlord games are PAW-games. Zusammenfassung. Sei v e i n kooperatives n-Personenspiel und sei h 9 { 1, 2 . . . . . n }. Mit v h bezeichnen wir die mittlere Auszahlung aller Koalitionen der GraBe h und mit v~ die mittlere Auszahlung aller Koalitionen der Gr6Be h, die den Spieler i e N nicht enthalten. In dieser Arbeit, ftihren wir den Begriff des Spieles mit proportionaler mittlerer Auszahlung (oder PMA-Spiel) ein. Diese sind null-reduzierte Spiele v, fiir die Zahlen ch 9 ~ existieren, sodag die Beziehung i Vh--Vh=C h (Vn_l--V~z_l) ffir jedes h 9 {2, 3 . . . . . n 1 } und ie N gilt. Der Begriff der mittleren Auszahlung wird dann benutzt, um eine Formel ftir den Shapley-Wert der PMA-Spiele abzuleiten. Wit zeigen, dab der Shapley-Wert, und die durch das Zentrum der Imputationsmenge, die gleichmfiBigen nicht-separablen Beitrage, bzw. gleichmfiBigen nicht-gemittelten Beitrfige definierten Werte der PMA-Spiele kollinear sind. Die Klasse aller PMA-Spiele enthfilt im strengen Sinne die Klasse aller kKoalitionsspiele, die die Kollinearit~tseigenschaft haben (Driessen und Funaki, 1991). Schlieglich zeigen wir, dab Correspondence to: T. Driessen die Einstimmigkeitsspiele und die Grundbesitzerspiele auch PMA-Spiele sind.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cooperative Benefit and Cost Games under Fairness Concerns

Solution concepts in cooperative games are based on either cost games or benefit games. Although cost games and benefit games are strategically equivalent, that is not the case in general for solution concepts. Motivated by this important observation, a new property called invariance property with respect to benefit/cost allocation is introduced in this paper. Since such a property can be regar...

متن کامل

Weakly monotonic solutions for cooperative games

The principle of weak monotonicity for cooperative games states that if a game changes so that the worth of the grand coalition and some player’s marginal contribution to all coalitions increase or stay the same, then this player’s payoff should not decrease. We investigate the class of values that satisfy effi ciency, symmetry, and weak monotonicity. It turns out that this class coincides with...

متن کامل

Alternative Axiomatic Characterizations of the Grey Shapley Value

The Shapley value, one of the most common solution concepts of cooperative game theory is defined and axiomatically characterized in different game-theoretic models. Certainly, the Shapley value can be used in interesting sharing cost/reward problems in the Operations Research area such as connection, routing, scheduling, production and inventory situations. In this paper, we focus on the Shapl...

متن کامل

A TRANSITION FROM TWO-PERSON ZERO-SUM GAMES TO COOPERATIVE GAMES WITH FUZZY PAYOFFS

In this paper, we deal with games with fuzzy payoffs. We proved that players who are playing a zero-sum game with fuzzy payoffs against Nature are able to increase their joint payoff, and hence their individual payoffs by cooperating. It is shown that, a cooperative game with the fuzzy characteristic function can be constructed via the optimal game values of the zero-sum games with fuzzy payoff...

متن کامل

Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values

One of the main issues in economics is the trade-off between marginalism and egalitarianism. In the context of cooperative games this trade-off can be framed as one of choosing to allocate according to the Shapley value or the equal division solution. In this paper we provide tools that make it possible to study this trade-off in a consistent way by providing three types of results on egalitari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005