Dirac Operators on Quantum Projective Spaces

نویسنده

  • FRANCESCO D’ANDREA
چکیده

We construct a family of self-adjoint operators DN , N ∈ Z, which have compact resolvent and bounded commutators with the coordinate algebra of the quantum projective space CPq, for any ` ≥ 2 and 0 < q < 1. They provide 0-dimensional equivariant even spectral triples. If ` is odd and N = 1 2 (` + 1), the spectral triple is real with KO-dimension 2` mod 8.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounded and Unbounded Fredholm Modules for Quantum Projective Spaces

We construct explicit generators of the K-theory and K-homology for the coordinate algebra of ‘functions’ on the quantum projective spaces. We also sketch a construction of unbounded Fredholm modules, that is to say Dirac-like operators and spectral triples of any positive real dimension.

متن کامل

Conservation laws for linear equations on quantum Minkowski spaces

The general, linear equations with constant coefficients on quantum Minkowski spaces are considered and the explicit formulae for their conserved currents are given. The proposed procedure can be simplified for ∗-invariant equations. The derived method is then applied to Klein-Gordon, Dirac and wave equations on different classes of Minkowski spaces. In the examples also symmetry operators for ...

متن کامل

Towards a Nonperturbative Covariant Regularization in 4D Quantum Field Theory

We give a noncommutative version of the complex projective space CP and show that scalar QFT on this space is free of UV divergencies. The tools necessary to investigate Quantum fields on this fuzzy CP are developed and several possibilities to introduce spinors and Dirac operators are discussed.

متن کامل

Some Observations on Dirac Measure-Preserving Transformations and their Results

Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...

متن کامل

Institute for Mathematical Physics towards a Nonperturbative Covariant Regularization in 4d Quantum Field Theory towards a Nonperturbative Covariant Regularization in 4d Quantum Field Theory

We give a noncommutative version of the complex projective space C P 2 and show that scalar QFT on this space is free of UV divergencies. The tools necessary to investigate Quantum elds on this fuzzy C P 2 are developed and several possibilities to introduce spinors and Dirac operators are discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009