Speaker Adaptation Techniques for Automatic Speech Recognition
نویسنده
چکیده
Statistical speech recognition using continuousdensity hidden Markov models (CDHMMs) has yielded many practical applications. However, in general, mismatches between the training data and input data significantly degrade recognition accuracy. Various acoustic model adaptation techniques using a few input utterances have been employed to overcome this problem. In this article, we survey these adaptation techniques, including maximum a posteriori (MAP) estimation, maximum likelihood linear regression (MLLR), and eigenvoice.
منابع مشابه
Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملACOUSTIC MODEL ADAPTATION FOR AUTOMATIC SPEECH RECOGNITION AND ANIMAL VOCALIZATION CLASSIFICATION by
ACOUSTIC MODEL ADAPTATION FOR AUTOMATIC SPEECH RECOGNITION AND ANIMAL VOCALIZATION CLASSIFICATION Jidong Tao, B.Eng., M.S. Marquette University, 2009 Automatic speech recognition (ASR) converts human speech to readable text. Acoustic model adaptation, also called speaker adaptation, is one of the most promising techniques in ASR for improving recognition accuracy. Adaptation works by tuning a g...
متن کاملThe use of speaker correlation information for automatic speech recognition
This dissertation addresses the independence of observations assumption which is typically made by today’s automatic speech recognition systems. This assumption ignores within-speaker correlations which are known to exist. The assumption clearly damages the recognition ability of standard speaker independent systems, as can seen by the severe drop in performance exhibited by systems between the...
متن کاملRemes Speaker - Based Segmentation and Adaptation in Automatic Speech Recognition
With proper training, automatic speech recognition works quite well when tested in conditions similar to the training conditions, but with a new speaker or a new environment the system performance often degrades. Speaker-based adaptation alters the speech recognition system to better match a specific speaker and thus improves the speech recognition results. In order to use speaker adaptation, t...
متن کاملMaximum Likelihood Linear Regression (MLLR) for ASR Severity Based Adaptation to Help Dysarthric Speakers
Automatic speech recognition (ASR) for dysarthric speakers is one of the most challenging research areas. The lack of corpus for dysarthric speakers makes it even more difficult. The speaker adaptation (SA) is an alternative solution to overcome the lack of dysarthric speech and enhance the performance of ASR. This paper introduces the Severity-based adaptation, using small amount of speech dat...
متن کامل