Robust estimation of periodic autoregressive processes in the presence of additive outliers

نویسندگان

  • Alessandro José Queiroz Sarnaglia
  • Valderio Anselmo Reisen
  • Céline Lévy-Leduc
چکیده

This paper suggests a robust estimation procedure for the parameters of the periodic AR (PAR) models when the data contains additive outliers. The proposed robust methodology is an extension of the robust scale and covariance functions given in, respectively, Rousseeuw and Croux [29] and Ma and Genton [24], to accommodate periodicity. These periodic robust functions are used in the Yule-Walker equations to obtain robust parameter estimates. The asymptotic central limit theorems of the estimators are established, and an extensive Monte Carlo experiment is conducted to evaluate the performance of the robust methodology for periodic time series with finite sample sizes. The quarterly Fraser River data was used as an example of application of the proposed robust methodology. All the results presented here give strong motivation to use the methodology in practical situations in which periodically correlated time series contain additive outliers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of parameter estimation on Phase II control chart performance in monitoring financial GARCH processes with contaminated data

The application of control charts for monitoring financial processes has received a greater focus after recent global crisis. The Generelized AutoRegressive Conditional Heteroskedasticity (GARCH) time series model is widely applied for modelling financial processes. Therefore, traditional Shewhart control chart is developed to monitor GARCH processes. There are some difficulties in financial su...

متن کامل

Simultaneous robust estimation of multi-response surfaces in the presence of outliers

A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...

متن کامل

A robust wavelet based profile monitoring and change point detection using S-estimator and clustering

Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...

متن کامل

Recursive estimation in autoregressive models with additive outliers

This work deals with recursive robust estimation in autoregressive models that are contaminated by additive outliers. The importance of such procedures in applied time series is obvious: (i) the recursive character of the estimation allows to treat time series in real time (on-line) updating previous estimates by means of simple calculations after delivering new observations; (ii) robustness of...

متن کامل

Testing the Exactitude of Estimation Methods in the Presence of Outliers: An accounting for Robust Kriging

Estimation of gold reserves and resources has been of interest to mining engineers and geologists for ages. The existence of outlier values shows the economic part of the deposits subject to the fact that don’t depend on the human or technical errors. The presence of these high values causes a pseudo dramatically increment in variance estimation of economical blocks when applying conventional m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 101  شماره 

صفحات  -

تاریخ انتشار 2010