The Loss Mechanics of Nanoporous Silicon Optical Waveguide for Biochemical Sensors
نویسندگان
چکیده
Nanoporous silicon optical waveguides, which serve as the basic foundation for porous silicon based biochemical sensors, have been fabricated by electrochemical etching and laser local oxidation. By optimizing the porous silicon layers, laser writing power and speed, acceptable optical losses have been achieved. Loss mechanisms include scattering, intrinsic absorption, coupling loss at the fiber interfaces, leakage to the silicon substrate and bending loss. At 1550 nm wavelength, we report a propagation loss of 10− 15 dB/cm, measured using the Fabry Pérot method.
منابع مشابه
Laser-written nanoporous silicon ridge waveguide for highly sensitive optical sensors.
We report that low-loss ridge waveguides are directly written on nanoporous silicon layers by using an argon-ion laser at 514 nm up to 100 mW. Optical characterization of the waveguides indicates light propagation loss lower than 0.5 dB/cm at 1550 nm after oxidation. A Mach-Zehnder interferometer sensor is experimentally demonstrated using the waveguide in its sensing branch, and analytical res...
متن کاملOptical and Thermal Properties of Nanoporous Material and Devices
Title of dissertation: OPTICAL AND THERMAL PROPERTIES OF NANOPOROUS MATERIAL AND DEVICES Kyowon Kim, Doctor of Philosophy, 2015 Dissertation directed by: Professor Thomas E. Murphy Dept. of Electrical & Computer Engineering In this thesis, we investigate the optical and thermal properties of porous silicon and its applications. In first part, porous silicon’s optical properties and application ...
متن کاملMiniature Microring Resonator Sensor Based on a Hybrid Plasmonic Waveguide
We propose a compact 1-μm-radius microring resonator sensor based on a hybrid plasmonic waveguide on a silicon-on-insulator substrate. The hybrid waveguide is composed of a metal-gap-silicon structure, where the optical energy is greatly enhanced in the narrow gap. We use the finite element method to numerically analyze the device optical characteristics as a biochemical sensor. As the optical ...
متن کاملLow loss coupler to interface silicon waveguide and hybrid plasmonic waveguide
A metallic coupler is proposed to interface a silicon on insulator (SOI) waveguide with a narrow hybrid plasmonic waveguide (200× 200 nm). The device operation is investigated and optimized to attain the best tradeoff between the mode confinement and the propagation loss. Calculations reveal that a high confinement and low loss of the energy is achieved from a silicon slab waveguide into the di...
متن کاملOptical pulse compression based on nonlinear silicon waveguides and chirped Bragg gratings
Due to the growing demand for higher bandwidth, employing optical devices instead of electronic devices in data transmission systems has attracted much attention in recent years. Optical switches, modulators and wavelength converters are a few examples of the required optical devices. CMOS compatible fabrication of these devices, leads to much more growing of this technology. Optical pulse comp...
متن کامل