Expiratory muscle loading increases intercostal muscle blood flow during leg exercise in healthy humans.
نویسندگان
چکیده
We investigated whether expiratory muscle loading induced by the application of expiratory flow limitation (EFL) during exercise in healthy subjects causes a reduction in quadriceps muscle blood flow in favor of the blood flow to the intercostal muscles. We hypothesized that, during exercise with EFL quadriceps muscle blood flow would be reduced, whereas intercostal muscle blood flow would be increased compared with exercise without EFL. We initially performed an incremental exercise test on eight healthy male subjects with a Starling resistor in the expiratory line limiting expiratory flow to approximately 1 l/s to determine peak EFL exercise workload. On a different day, two constant-load exercise trials were performed in a balanced ordering sequence, during which subjects exercised with or without EFL at peak EFL exercise workload for 6 min. Intercostal (probe over the 7th intercostal space) and vastus lateralis muscle blood flow index (BFI) was calculated by near-infrared spectroscopy using indocyanine green, whereas cardiac output (CO) was measured by an impedance cardiography technique. At exercise termination, CO and stroke volume were not significantly different during exercise, with or without EFL (CO: 16.5 vs. 15.2 l/min, stroke volume: 104 vs. 107 ml/beat). Quadriceps muscle BFI during exercise with EFL (5.4 nM/s) was significantly (P = 0.043) lower compared with exercise without EFL (7.6 nM/s), whereas intercostal muscle BFI during exercise with EFL (3.5 nM/s) was significantly (P = 0.021) greater compared with that recorded during control exercise (0.4 nM/s). In conclusion, increased respiratory muscle loading during exercise in healthy humans causes an increase in blood flow to the intercostal muscles and a concomitant decrease in quadriceps muscle blood flow.
منابع مشابه
Blood flow does not redistribute from respiratory to leg muscles during exercise breathing heliox or oxygen in COPD.
In patients with chronic obstructive pulmonary disease (COPD), one of the proposed mechanisms for improving exercise tolerance, when work of breathing is experimentally reduced, is redistribution of blood flow from the respiratory to locomotor muscles. Accordingly, we investigated whether exercise capacity is improved on the basis of blood flow redistribution during exercise while subjects are ...
متن کاملFolic acid ingestion improves skeletal muscle blood flow during graded handgrip and plantar flexion exercise in aged humans.
Skeletal muscle blood flow is attenuated in aged humans performing dynamic exercise, which is due, in part, to impaired local vasodilatory mechanisms. Recent evidence suggests that folic acid improves cutaneous vasodilation during localized and whole body heating through nitric oxide-dependent mechanisms. However, it is unclear whether folic acid improves vasodilation in other vascular beds dur...
متن کاملSkeletal muscle metaboreceptor stimulation opposes peak metabolic vasodilation in humans.
The total blood flow requirements of a large muscle mass can exceed the maximal cardiac output generated by the heart during exercise. Therefore, to maintain blood pressure, muscle vasodilation must be opposed by sympathetic vasoconstriction. The primary neural signal that increases sympathetic outflow is unclear. In an effort to isolate the vasoconstricting mechanism that opposes vasodilation,...
متن کاملMuscle blood flow responses to dynamic exercise in young obese humans.
Exercise is a common nonpharmacological way to combat obesity; however, no studies have systematically tested whether obese humans exhibit reduced skeletal muscle blood flow during dynamic exercise. We hypothesized that exercise-induced blood flow to skeletal muscle would be lower in young healthy obese subjects (body mass index of >30 kg/m(2)) compared with lean subjects (body mass index of <2...
متن کاملCirculating ATP-induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle.
Despite increases in muscle sympathetic vasoconstrictor activity, skeletal muscle blood flow and O2 delivery increase during exercise in humans in proportion to the local metabolic demand, a phenomenon coupled to local reductions in the oxygenation state of haemoglobin and concomitant increases in circulating ATP. We tested the hypothesis that circulating ATP contributes to local blood flow and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 109 2 شماره
صفحات -
تاریخ انتشار 2010