Amplification of xenon NMR and MRI by remote detection.
نویسندگان
چکیده
A technique is proposed in which an NMR spectrum or MRI is encoded and stored as spin polarization and is then moved to a different physical location to be detected. Remote detection allows the separate optimization of the encoding and detection steps, permitting the independent choice of experimental conditions and excitation and detection methodologies. In the initial experimental demonstration of this technique, we show that taking dilute 129Xe from a porous sample placed inside a large encoding coil and concentrating it into a smaller detection coil can amplify NMR signal. In general, the study of NMR active molecules at low concentration that have low physical filling factor is facilitated by remote detection. In the second experimental demonstration, MRI information encoded in a very low-field magnet (4-7 mT) is transferred to a high-field magnet (4.2 T) to be detected under optimized conditions. Furthermore, remote detection allows the utilization of ultrasensitive optical or superconducting quantum interference device detection techniques, which broadens the horizon of NMR experimentation.
منابع مشابه
Hyperpolarized xenon NMR and MRI signal amplification by gas extraction.
A method is reported for enhancing the sensitivity of NMR of dissolved xenon by detecting the signal after extraction to the gas phase. We demonstrate hyperpolarized xenon signal amplification by gas extraction (Hyper-SAGE) in both NMR spectra and magnetic resonance images with time-of-flight information. Hyper-SAGE takes advantage of a change in physical phase to increase the density of polari...
متن کاملMRI thermometry based on encapsulated hyperpolarized xenon.
A new approach to MRI thermometry using encapsulated hyperpolarized xenon is demonstrated. The method is based on the temperature dependent chemical shift of hyperpolarized xenon in a cryptophane-A cage. This shift is linear with a slope of 0.29 ppm °C(-1) which is perceptibly higher than the shift of the proton resonance frequency of water (ca. 0.01 ppm °C(-1)) that is currently used for MRI t...
متن کاملA xenon-based molecular sensor assembled on an MS2 viral capsid scaffold.
In MRI, anatomical structures are most often differentiated by variations in their bulk magnetic properties. Alternatively, exogenous contrast agents can be attached to chemical moieties that confer affinity to molecular targets; the distribution of such contrast agents can be imaged by magnetic resonance. Xenon-based molecular sensors are molecular imaging agents that rely on the reversible ex...
متن کاملHyperpolarized xenon for NMR and MRI applications.
Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) suffer from intrinsic low sensitivity because even strong external magnetic fields of ~10 T generate only a small detectable net-magnetization of the sample at room temperature (1). Hence, most NMR and MRI applications rely on the detection of molecules at relative high concentration (e.g., water for imaging of biological tissue) o...
متن کاملDevelopment of an antibody-based, modular biosensor for 129Xe NMR molecular imaging of cells at nanomolar concentrations.
Magnetic resonance imaging (MRI) is seriously limited when aiming for visualization of targeted contrast agents. Images are reconstructed from the weak diamagnetic properties of the sample and require an abundant molecule like water as the reporter. Micromolar to millimolar concentrations of conventional contrast agents are needed to generate image contrast, thus excluding many molecular marker...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 16 شماره
صفحات -
تاریخ انتشار 2003