Fourth-order balanced source term treatment in central WENO schemes for shallow water equations

نویسندگان

  • Valerio Caleffi
  • Alessandro Valiani
  • Anna Bernini
چکیده

The aim of this work is to develop a well-balanced Central Weighted Essentially Non Oscillatory (CWENO) method, fourth-order accurate in space and time, for shallow water system of balance laws with bed slope source term. Time accuracy is obtained applying a Runge-Kutta scheme (RK), coupled with the Natural Continuous Extension (NCE) approach. Space accuracy is obtained using WENO reconstructions of the conservative variables and of the water-surface elevation. Extension of the applicability of the standard CWENO scheme to very irregular bottoms, preserving high order accuracy, is obtained introducing two original procedures. The former involves the evaluation of the point-values of the flux derivative, coupled with the bed source term. The latter involves the spatial integration of the source term, analytically manipulated to take advantage from the regularity of the free surface elevation, usually smoother than the bottom elevation. Both these procedures satisfy the C-property, the property of exactly preserving the quiescent flow. Several standard one-dimensional test cases are used to verify high-order accuracy, exact C-property, and good resolution properties for smooth and discontinuous solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating high-order WENO schemes using two heterogeneous GPUs

A double-GPU code is developed to accelerate WENO schemes. The test problem is a compressible viscous flow. The convective terms are discretized using third- to ninth-order WENO schemes and the viscous terms are discretized by the standard fourth-order central scheme. The code written in CUDA programming language is developed by modifying a single-GPU code. The OpenMP library is used for parall...

متن کامل

A New Approach of High OrderWell-Balanced Finite Volume WENO Schemes and Discontinuous Galerkin Methods for a Class of Hyperbolic Systems with Source Terms†

Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source terms. In our earlier work [31–33], we designed high order well-balanced schemes to a class of hyperbolic systems with separable source terms. In this paper, we present a different approach to the same purpose: designing high order well-balanced finite volume weight...

متن کامل

On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas

Shallow water equations are widely used in ocean and hydraulic engineering to model flows in rivers, reservoirs or coastal areas, among others applications. In the form considered in this paper, they constitute a hyperbolic system of conservation laws with a source term due to the bottom topography. In recent years, there has been increasing interest concerning the design of high-order numerica...

متن کامل

A Numerical Study for the Performance of the Weno Schemes Based on Different Numerical Fluxes for the Shallow Water Equations

In this paper we investigate the performance of the weighted essential non-oscillatory (WENO) methods based on different numerical fluxes, with the objective of obtaining better performance for the shallow water equations by choosing suitable numerical fluxes. We consider six numerical fluxes, i.e., Lax-Friedrichs, local Lax-Friedrichs, Engquist-Osher, Harten-Lax-van Leer, HLLC and the first-or...

متن کامل

Anti-diffusive finite difference WENO methods for shallow water with transport of pollutant

In this paper we further explore and apply our recent anti-diffusive flux corrected high order finite difference WENO schemes for conservation laws [18] to compute the Saint-Venant system of shallow water equations with pollutant propagation, which is described by a transport equation. The motivation is that the high order anti-diffusive WENO scheme for conservation laws produces sharp resoluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 218  شماره 

صفحات  -

تاریخ انتشار 2006