Soft Magnetic Bulk Glassy Fe–B–Si–Nb Alloys with High Saturation Magnetization above 1.5 T
نویسندگان
چکیده
New Fe-based bulk glassy alloys were synthesized in the (Fe0.75B0.15Si0.10)100−x Nbx system by copper mould casting. The maximum diameter of the bulk glassy alloy rod was 0.5 mm at 1 at%Nb, 1.0 mm at 2 at%Nb and 1.5 mm at 4 at%Nb. No glass transition is observed at 0 at%Nb, but the addition of Nb causes the appearance of glass transition before crystallization. The glass transition temperature (Tg) and crystallization temperature (Tx) of the bulk glassy rods were 815 K and 858 K, respectively, for the 1 at%Nb alloy, and 835 K and 885 K, respectively, for the 4 at%Nb alloy. The reduced glass transition temperature (Tg/Tl) defined by the ratio of Tg to the liquidus temperature (Tl) was measured as 0.56 at 1 at%Nb, 0.57 at 2 at%Nb and 0.61 at 4 at%Nb. There is a tendency for Tg, ∆Tx (= Tx − Tg) and Tg/Tl to increase with increasing Nb content. The effect of Nb addition can be interpreted in the framework of the three component rules for the formation of bulk glassy alloys and the stabilization of supercooled liquid. The Fe–B–Si alloy satisfies the three component rules by the addition of Nb. The bulk glassy alloy rods exhibited good soft magnetic properties, i.e., high saturation magnetization (Is) of 1.47 to 1.51 T, low coercive force (Hc) of 2.9 to 3.7 A/m and Curie temperature of 593 to 684 K. The high Is and low Hc, as well as the formation of bulk glassy alloys in the simple alloy system are promising as a new type of soft magnetic bulk alloy.
منابع مشابه
Effect of Yttrium Addition on Glass-Forming Ability and Magnetic Properties of Fe–Co–B–Si–Nb Bulk Metallic Glass
The glass-forming ability (GFA) and the magnetic properties of the [(Fe0.5Co0.5)0.75B0.20Si0.05]96Nb4−xYx bulk metallic glasses (BMGs) have been studied. The partial replacement of Nb by Y improves the thermal stability of the glass against crystallization. The saturation mass magnetization (σs) exhibits a maximum around 2 at. % Y, and the value of σs of the alloy with 2 at. % Y is 6.5% larger ...
متن کاملVariation of Magnetization and Curie temperature with Isothermal Annealing of Higher Cr Content of Fe73.5-
This is well known that amorphous state is metastable. Metastability of amorphous or glassy metal alloys offers the possibility of phase separation diffusion of various species and structural relaxation even though the alloys remains amorphous when they are annealed at temperature well below the crystallization temperature. All these changes have effect on the intrinsic magnetic properties such...
متن کاملCobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties.
Bulk metallic glasses--formed by supercooling the liquid state of certain metallic alloys--have potentially superior mechanical properties to crystalline materials. Here, we report a Co(43)Fe(20)Ta(5.5)B(31.5) glassy alloy exhibiting ultrahigh fracture strength of 5,185 MPa, high Young's modulus of 268 GPa, high specific strength of 6.0 x 10(5) Nm kg(-1) and high specific Young's modulus of 31 ...
متن کاملEffect of Cu Addition on Soft Magnetic Properties of Fe–Zr–Si Amorphous Alloy
The effect of Cu addition on the soft magnetic properties of FeZrSi amorphous alloy was investigated by X-ray analysis, TEM observation, and B-H curve tracer. As a melt-spun amorphous ribbon sample was annealed above the crystallization onset temperature, very fine ¡-Fe particles smaller than 315 nm were precipitated and uniformly distributed in an amorphous matrix. Cu addition to FeZrSi am...
متن کاملمشخصه یابی ساختاری و مغناطیسی آلیاژهای (Fe65-Co35)100-xSix تولید شده به روش آلیاژسازی مکانیکی
Fe-Co alloys have unique magnetic applications. Fe50Co50 alloy has the highest saturation magnetization value among Fe-Co alloys. Moreover, the introduction of Si into Fe can result in a decrease of magnetic anisotropy. In this study, in order to utilize combined advantages of Si and Co, the effect of adding 10 and 20 at.% Si on the microstructural and magnetic properties of Fe65Co35 alloy wa...
متن کامل