Multi-scale Convolutional Neural Networks for Lung Nodule Classification
نویسندگان
چکیده
We investigate the problem of diagnostic lung nodule classification using thoracic Computed Tomography (CT) screening. Unlike traditional studies primarily relying on nodule segmentation for regional analysis, we tackle a more challenging problem on directly modelling raw nodule patches without any prior definition of nodule morphology. We propose a hierarchical learning framework--Multi-scale Convolutional Neural Networks (MCNN)--to capture nodule heterogeneity by extracting discriminative features from alternatingly stacked layers. In particular, to sufficiently quantify nodule characteristics, our framework utilizes multi-scale nodule patches to learn a set of class-specific features simultaneously by concatenating response neuron activations obtained at the last layer from each input scale. We evaluate the proposed method on CT images from Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI), where both lung nodule screening and nodule annotations are provided. Experimental results demonstrate the effectiveness of our method on classifying malignant and benign nodules without nodule segmentation.
منابع مشابه
Hybrid-feature-guided lung nodule type classification on CT images
In this paper, we propose a novel classification method for lung nodules from CT images based on hybrid features. Towards nodules of different types, including well-circumscribed, vascularized, juxtapleural, pleural-tail, as well as ground glass optical (GGO) and non-nodule from CT scans, our method has achieved promising classification results. The proposed method utilizes hybrid descriptors c...
متن کاملDiagnostic Classification Of Lung Nodules Using 3D Neural Networks
Lung cancer is the leading cause of cancer-related death worldwide. Early diagnosis of pulmonary nodules in Computed Tomography (CT) chest scans provides an opportunity for designing effective treatment and making financial and care plans. In this paper, we consider the problem of diagnostic classification between benign and malignant lung nodules in CT images, which aims to learn a direct mapp...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملCentral focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation
Accurate lung nodule segmentation from computed tomography (CT) images is of great importance for image-driven lung cancer analysis. However, the heterogeneity of lung nodules and the presence of similar visual characteristics between nodules and their surroundings make it difficult for robust nodule segmentation. In this study, we propose a data-driven model, termed the Central Focused Convolu...
متن کاملMulti-view multi-scale CNNs for lung nodule type classification from CT images
In this paper, we propose a novel convolution neural networks (CNNs) based method for nodule type classification. Compared with classical approaches that are handling four solid nodule types, i.e., well-circumscribed, vascularized, juxtapleural and pleural-tail, our method could also achieve competitive classification rates on ground glass optical (GGO) nodules and non-nodules in computed tomog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information processing in medical imaging : proceedings of the ... conference
دوره 24 شماره
صفحات -
تاریخ انتشار 2015