Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte
نویسندگان
چکیده
We report electrical characterization of monolayer molybdenum disulfide (MoS2) devices using a thin layer of polymer electrolyte (PE) consisting of poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO4) as both a contact-barrier reducer and channel mobility booster. We find that bare MoS2 devices (without PE) fabricated on Si/SiO2 have low channel mobility and large contact resistance, both of which severely limit the field-effect mobility of the devices. A thin layer of PEO/LiClO4 deposited on top of the devices not only substantially reduces the contact resistance but also boost the channel mobility, leading up to three-orders-of-magnitude enhancement of the field-effect mobility of the device. When the PE is used as a gate medium, the MoS2 field-effect transistors exhibit excellent device characteristics such as a near ideal subthreshold swing and an on/off ratio of 106 as a result of the strong gate-channel coupling. (Some figures may appear in colour only in the online journal)
منابع مشابه
Electromechanical coupling and design considerations in single-layer MoS2 suspended-channel transistors and resonators.
We report on the analysis of electromechanical coupling effects in suspended doubly-clamped single-layer MoS2 structures, and the designs of suspended-channel field-effect transistors (FETs) and vibrating-channel nanoelectromechanical resonators. In DC gating scenario, signal transduction processes including electrostatic actuation, deflection, straining on bandgap, mobility, carrier density an...
متن کاملStatistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films.
Monolayer molybdenum disulfide (MoS2) with a direct band gap of 1.8 eV is a promising two-dimensional material with a potential to surpass graphene in next generation nanoelectronic applications. In this Letter, we synthesize monolayer MoS2 on Si/SiO2 substrate via chemical vapor deposition (CVD) method and comprehensively study the device performance based on dual-gated MoS2 field-effect trans...
متن کاملImproved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating.
We report the fabrication of ionic liquid (IL)-gated field-effect transistors (FETs) consisting of bilayer and few-layer MoS2. Our transport measurements indicate that the electron mobility μ ≈ 60 cm(2) V(-1) s(-1) at 250 K in IL-gated devices exceeds significantly that of comparable back-gated devices. IL-FETs display a mobility increase from ≈ 100 cm(2) V(-1) s(-1) at 180 K to ≈ 220 cm(2) V(-...
متن کاملThickness-dependent mobility in two-dimensional MoS₂ transistors.
Two-dimensional (2D) semiconductors such as mono and few-layer molybdenum disulphide (MoS2) are very promising for integration in future electronics as they represent the ultimate miniaturization limit in the vertical direction. While monolayer MoS2 attracted considerable attention due to its broken inversion symmetry, spin/valley coupling and the presence of a direct band gap, few-layer MoS2 r...
متن کاملPolymer electrolyte gating of carbon nanotube network transistors.
Network behavior in single-walled carbon nanotubes (SWNTs) is examined by polymer electrolyte gating. High gate efficiencies, low voltage operation, and the absence of hysteresis in polymer electrolyte gating lead to a convenient and effective method of analyzing transport in SWNT networks. Furthermore, the ability to control carrier type with chemical groups of the host polymer allows us to ex...
متن کامل