Quasi-projectivity of the Moduli Space of Smooth Kähler-einstein Fano Manifolds

نویسندگان

  • CHI LI
  • XIAOWEI WANG
  • CHENYANG XU
چکیده

In this note, we prove that there is a canonical continuous Hermitian metric on the CM line bundle over the proper moduli space M of smoothable Kähler-Einstein Fano varieties. The curvature of this metric is the Weil-Petersson current, which exists as a positive (1,1)-current on M and extends the canonical Weil-Petersson current on the moduli space parametrizing smooth Kähler-Einstein Fano manifoldsM. As a consequence, we show that the CM line bundle is nef and big on M and its restriction on M is ample.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Warped product and quasi-Einstein metrics

Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...

متن کامل

Optimal Bounds for the Volumes of Kähler-einstein Fano Manifolds

We show that any n-dimensional Ding semistable Fano manifold X satisfies that the anti-canonical volume is less than or equal to the value (n + 1). Moreover, the equality holds if and only if X is isomorphic to the n-dimensional projective space. Together with a result of Berman, we get the optimal upper bound for the anti-canonical volumes of n-dimensional Kähler-Einstein Fano manifolds.

متن کامل

Positivity of Relative Canonical Bundles for Families of Canonically Polarized Manifolds

Given an effectively parameterized family of canonically polarized manifolds the Kähler-Einstein metrics on the fibers induce a hermitian metric on the relative canonical bundle. We use a global elliptic equation to show that this metric is strictly positive. For degenerating families we obtain a singular hermitian metric. Applications concern the curvature of the classical and generalized Weil...

متن کامل

Kähler-ricci Flow on Stable Fano Manifolds

We study the Kähler-Ricci flow on Fano manifolds. We show that if the curvature is bounded along the flow and if the manifold is K-polystable and asymptotically Chow semistable, then the flow converges exponentially fast to a Kähler-Einstein metric.

متن کامل

Resolutions of non-regular Ricci-flat Kähler cones

We present explicit constructions of complete Ricci-flat Kähler metrics that are asymptotic to cones over non-regular Sasaki-Einstein manifolds. The metrics are constructed from a complete Kähler-Einstein manifold (V, gV ) of positive Ricci curvature and admit a Hamiltonian two-form of order two. We obtain Ricci-flat Kähler metrics on the total spaces of (i) holomorphic C/Zp orbifold fibrations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015