Deconvolving Active Contours for Fluorescence Microscopy Images
نویسندگان
چکیده
We extend active contours to constrained iterative deconvolution by replacing the external energy function with a model-based likelihood. This enables sub-pixel estimation of the outlines of diffractionlimited objects, such as intracellular structures, from fluorescence micrographs. We present an efficient algorithm for solving the resulting optimization problem and robustly estimate object outlines. We benchmark the algorithm on artificial images and assess its practical utility on fluorescence micrographs of the Golgi and endosomes in live cells.
منابع مشابه
Segmentation and tracking of cytoskeletal filaments using open active contours.
We use open active contours to quantify cytoskeletal structures imaged by fluorescence microscopy in two and three dimensions. We developed an interactive software tool for segmentation, tracking, and visualization of individual fibers. Open active contours are parametric curves that deform to minimize the sum of an external energy derived from the image and an internal bending and stretching e...
متن کاملDetection of Spatially Correlated Objects in 3D Images Using Appearance Models and Coupled Active Contours
We consider the problem of segmenting 3D images that contain a dense collection of spatially correlated objects, such as fluorescent labeled cells in tissue. Our approach involves an initial modeling phase followed by a data-fitting segmentation phase. In the first phase, cell shape (membrane bound) is modeled implicitly using a parametric distribution of correlation function estimates. The nuc...
متن کاملTubule segmentation of fluorescence microscopy images based on convolutional neural networks with inhomogeneity correction
Fluorescence microscopy has become a widely used tool for studying various biological structures of in vivo tissue or cells. However, quantitative analysis of these biological structures remains a challenge due to their complexity which is exacerbated by distortions caused by lens aberrations and light scattering. Moreover, manual quantification of such image volumes is an intractable and error...
متن کاملMultiresolution Multiscale Active Mask Segmentation of Fluorescence Microscope Images.
We propose an active mask segmentation framework that combines the advantages of statistical modeling, smoothing, speed and flexibility offered by the traditional methods of region-growing, multiscale, multiresolution and active contours respectively. At the crux of this framework is a paradigm shift from evolving contours in the continuous domain to evolving multiple masks in the discrete doma...
متن کاملDispersion, aberration and deconvolution in multi-wavelength fluorescence images.
The wavelength dependence of the incoherent point spread function in a wide-field microscope was investigated experimentally. Dispersion in the sample and optics can lead to significant changes in the point spread function as wavelength is varied over the range commonly used in fluorescence microscopy. For a given sample, optical conditions can generally be optimized to produce a point spread f...
متن کامل