Neural changes after operant conditioning of the aerial respiratory behavior in Lymnaea stagnalis.

نویسندگان

  • G E Spencer
  • N I Syed
  • K Lukowiak
چکیده

In this study, we demonstrate neural changes that occurred during operant conditioning of the aerial respiratory behavior of Lymnaea stagnalis. Aerial respiration in Lymnaea occurs at the water interface and is achieved by opening and closing movements of its respiratory orifice, the pneumostome. This behavior is controlled by a central pattern generator (CPG), the neurons of which, as well as the motoneurons innervating the pneumostome, have previously been identified and their synaptic connections well characterized. The respiratory behavior was operantly conditioned by applying a mechanical stimulus to the open pneumostome whenever the animal attempted to breathe. This negative reinforcement to the open pneumostome resulted in its immediate closure and a significant reduction in the overall respiratory activity. Electrophysiological recordings from the isolated CNSs after operant conditioning showed that the spontaneous patterned respiratory activity of the CPG neurons was significantly reduced. This included reduced spontaneous activity of the CPG interneuron involved in pneumostome opening (input 3 interneuron) and a reduced frequency of spontaneous tonic activity of the CPG interneuron [right pedal dorsal 1 (RPeD1)]. The ability to trigger the patterned respiratory activity by electrical stimulation of RPeD1 was also significantly reduced after operant conditioning. This study therefore demonstrates significant changes within a CPG that are associated with changes in a rhythmic homeostatic behavior after operant conditioning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in the activity of a CpG neuron after the reinforcement of an operantly conditioned behavior in Lymnaea.

We have previously shown that the aerial respiratory behavior of the mollusk Lymnaea stagnalis can be operantly conditioned, and the central pattern generating (CPG) neurons underlying this behavior have been identified. As neural correlates of operant conditioning remain poorly defined in both vertebrates and invertebrates, we have used the Lymnaea respiratory CPG to investigate neuronal chang...

متن کامل

Behavioural and Neural Correlates of Operant Conditioning in Lymnaea Stagnalis: Role of Previous Experience during Development

The freshwater mollusc Lymnaea stagnalis was utilized in this study to further the understanding of how network properties change as a result of associative learning, and to determine whether or not this plasticity is dependent on previous experience during development. The respiratory and neural correlates of operant conditioning were first determined in normally reared Lymnaea. The same proce...

متن کامل

Operant conditioning of aerial respiratory behaviour in Lymnaea stagnalis

In this study, we operantly conditioned the aerial respiratory behaviour of the freshwater snail Lymnaea stagnalis. Aerial respiration in Lymnaea stagnalis is accomplished by the spontaneous opening and closing of its respiratory orifice, the pneumostome, at the water surface. Weak tactile stimulation of the pneumostome area, when the pneumostome is open, evoked only the pneumostome closure res...

متن کامل

Novel neural correlates of operant conditioning in normal and differentially reared Lymnaea.

The aerial respiratory behaviour of the mollusc Lymnaea stagnalis is an important homeostatic behaviour that can be operantly conditioned. The central pattern generator underlying this behaviour, as well as motorneurons innervating the respiratory orifice, the pneumostome, have been identified and their activity can be monitored in the semi-intact preparation using electrophysiological recordin...

متن کامل

Inverse Relationship between Basal Pacemaker Neuron Activity and Aversive Long-Term Memory Formation in Lymnaea stagnalis

Learning and memory formation are essential physiological functions. While quiescent neurons have long been the focus of investigations into the mechanisms of memory formation, there is increasing evidence that spontaneously active neurons also play key roles in this process and possess distinct rules of activity-dependent plasticity. In this study, we used a well-defined aversive learning mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 5  شماره 

صفحات  -

تاریخ انتشار 1999