Alexandre César Muniz

نویسندگان

  • Antonio Augusto Chaves
  • Luiz Antonio Nogueira Lorena
چکیده

This paper presents the Clustering Search (CS) as a new hybrid metaheuristic, which works in conjunction with other metaheuristics, managing the implementation of local search algorithms for optimization problems. Usually the local search is costly and should be used only in promising regions of the search space. The CS assists in the discovery of these regions by dividing the search space into clusters. The CS and its applications are reviewed and a case study for a problem of capacitated clustering is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of FLDA, MLP and SVM in Diagnosis of Lung Nodule

The purpose of the present work is to compare three classifiers: Fisher’s Linear Discriminant Analysis, Multilayer Perceptron and Support Vector Machine to diagnosis of lung nodule. These algorithms are tested on a database with 36 nodules, being 29 benigns and 7 malignants. Results show that the three algorithms had similar performance on this particular task.

متن کامل

Population Training Heuristics

This work describes a new way of employing problem-specific heuristics to improve evolutionary algorithms: the Population Training Heuristic (PTH). The PTH employs heuristics in fitness definition, guiding the population to settle down in search areas where the individuals can not be improved by such heuristics. Some new theoretical improvements not present in early algorithms are now introduce...

متن کامل

-Opt Population Training for Minimization of Open Stack Problem

This paper describes an application of a Constructive Genetic Algorithm (CGA) to the Minimization Open Stack Problem (MOSP). The MOSP happens in a production system scenario, and consists of determining a sequence of cut patterns that minimizes the maximum number of opened stacks during the cutting process. The CGA has a number of new features compared to a traditional genetic algorithm, as a p...

متن کامل

Detecting Promising Areas by Evolutionary Clustering Search

A challenge in hybrid evolutionary algorithms is to define efficient strategies to cover all search space, applying local search only in actually promising search areas. This paper proposes a way of detecting promising search areas based on clustering. In this approach, an iterative clustering works simultaneously to an evolutionary algorithm accounting the activity (selections or updatings) in...

متن کامل

Pattern Sequencing Problems by Clustering Search

Modern search methods for optimization consider hybrid search metaheuristics those employing general optimizers working together with a problem-specific local search procedure. The hybridism comes from the balancing of global and local search procedures. A challenge in such algorithms is to discover efficient strategies to cover all the search space, applying local search only in actually promi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013