A note on the vertex arboricity of signed graphs

نویسندگان

  • Weichan Liu
  • Chen Gong
  • Lifang Wu
  • Xin Zhang
چکیده

A signed tree-coloring of a signed graph (G, σ) is a vertex coloring c so that G(i,±) is a forest for every i ∈ c(u) and u ∈ V(G), where G(i,±) is the subgraph of (G, σ) whose vertex set is the set of vertices colored by i or −i and edge set is the set of positive edges with two end-vertices colored both by i or both by −i, along with the set of negative edges with one end-vertex colored by i and the other colored by −i. If c is a function from V(G) to Mn, where Mn is {±1,±2, . . . ,±k} if n = 2k, and {0,±1,±2, . . . ,±k} if n = 2k + 1, then c a signed tree-n-coloring of (G, σ). The minimum integer n such that (G, σ) admits a signed tree-n-coloring is the signed vertex arboricity of (G, σ), denoted by va(G, σ). In this paper, we first show that two switching equivalent signed graphs have the same signed vertex arboricity, and then prove that va(G, σ) ≤ 3 for every balanced signed triangulation and for every edgemaximal K5-minor-free graph with balanced signature. This generalizes the well-known result that the vertex arboricity of every planar graph is at most 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On list vertex 2-arboricity of toroidal graphs without cycles of specific length

The vertex arboricity $rho(G)$ of a graph $G$ is the minimum number of subsets into which the vertex set $V(G)$ can be partitioned so that each subset induces an acyclic graph‎. ‎A graph $G$ is called list vertex $k$-arborable if for any set $L(v)$ of cardinality at least $k$ at each vertex $v$ of $G$‎, ‎one can choose a color for each $v$ from its list $L(v)$ so that the subgraph induced by ev...

متن کامل

Signed total Italian k-domination in graphs

Let k ≥ 1 be an integer, and let G be a finite and simple graph with vertex set V (G). A signed total Italian k-dominating function (STIkDF) on a graph G is a functionf : V (G) → {−1, 1, 2} satisfying the conditions that $sum_{xin N(v)}f(x)ge k$ for each vertex v ∈ V (G), where N(v) is the neighborhood of $v$, and each vertex u with f(u)=-1 is adjacent to a vertex v with f(v)=2 or to two vertic...

متن کامل

Signed total Roman k-domination in directed graphs

Let $D$ be a finite and simple digraph with vertex set $V(D)$‎.‎A signed total Roman $k$-dominating function (STR$k$DF) on‎‎$D$ is a function $f:V(D)rightarrow{-1‎, ‎1‎, ‎2}$ satisfying the conditions‎‎that (i) $sum_{xin N^{-}(v)}f(x)ge k$ for each‎‎$vin V(D)$‎, ‎where $N^{-}(v)$ consists of all vertices of $D$ from‎‎which arcs go into $v$‎, ‎and (ii) every vertex $u$ for which‎‎$f(u)=-1$ has a...

متن کامل

A note on vertex-edge Wiener indices of graphs

The vertex-edge Wiener index of a simple connected graph G is defined as the sum of distances between vertices and edges of G. Two possible distances D_1(u,e|G) and D_2(u,e|G) between a vertex u and an edge e of G were considered in the literature and according to them, the corresponding vertex-edge Wiener indices W_{ve_1}(G) and W_{ve_2}(G) were introduced. In this paper, we present exact form...

متن کامل

A Note on Vertex Arboricity of Toroidal Graphs without 7-Cycles

The vertex arboricity ρ(G) of a graph G is the minimum number of subsets into which the vertex set V (G) can be partitioned so that each subset induces an acyclic graph. In this paper, it is shown that if G is a toroidal graph without 7-cycles, moreover, G contains no triangular and adjacent 4-cycles, then ρ(G) ≤ 2. Mathematics Subject Classification: Primary: 05C15; Secondary: 05C70

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1708.03077  شماره 

صفحات  -

تاریخ انتشار 2017