Coherent Motions in the Fermi-Pasta-Ulam Model

نویسنده

  • C. Eugene Wayne
چکیده

1. Models of coupled oscillators 2. Two main classes (a) Models with on-site potentials; e.g. Frenkel-Kontorova or discrete NLS (b) Models with only nearest neighbor coupling; e.g. FPU type models 3. Focus on: (a) localized oscillations (b) traveling waves 4. Numerical experiments of Kruskal and Zabusky and the discovery of solitons. 5. The formal approximation of the FPU model by the KdV equation 6. A general method of justifying approximations by modulation equations 7. Details of the approximation proof in the case of the FPU model. ∗The work of the author is supported in part by the NSF under grant number DMS-0405724

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An integrable approximation for the Fermi-Pasta-Ulam lattice

This contribution presents a review of results obtained from computations of approximate equations of motion for the Fermi-Pasta-Ulam lattice. These approximate equations are obtained as a finite-dimensional Birkhoff normal form. It turns out that in many cases, the Birkhoff normal form is suitable for application of the KAM theorem. In particular this proves Nishida’s 1971 conjecture stating t...

متن کامل

THE FERMI-PASTA-ULAM LATTICE Background The Fermi-Pasta-Ulam lattice is named after the experiments

The Fermi-Pasta-Ulam lattice is named after the experiments performed by Enrico Fermi, John Pasta, and Stanislaw Ulam in 1954-5 on the Los Alamos MANIAC computer, one of the first electronic computers. As reported in Ulam’s autobiography [Uh], Fermi immediately suggested using the new machine for theoretical work, and it was decided to start by studying the vibrations of a string under the infl...

متن کامل

Asymptotic two-soliton solutions solutions in the Fermi-Pasta-Ulam model

We prove the existence of asymptotic two-soliton states in the Fermi-Pasta-Ulam model with general interaction potential. That is, we exhibit solutions whose difference in l from the linear superposition of two solitary waves goes to zero as time goes to infinity.

متن کامل

A Simple Proof of the Stability of Solitary Waves in the Fermi-Pasta-Ulam model near the KdV Limit

By combining results of Mizumachi on the stability of solitons for the Toda lattice with a simple rescaling and a careful control of the KdV limit we give a simple proof that small amplitude, long-wavelength solitary waves in the Fermi-Pasta-Ulam (FPU) model are linearly stable and hence by the results of Friesecke and Pego that they are also nonlinearly, asymptotically stable.

متن کامل

A Symmetric Normal Form for the Fermi Pasta Ulam Chain

The Fermi Pasta Ulam chain with periodic boundary conditions admits discrete and continuous symmetries. These symmetries allow one to formulate important restrictions on the Birkhoff normal form of this Hamiltonian system. We derive integrability properties and KAM statements. Hence the combination of symmetry and resonance in the periodic Fermi Pasta Ulam chain explains its quasiperiodic behav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008