Design and Implementation of Model Predictive Control for a Gyroscopic Inverted Pendulum

نویسندگان

  • Trung-Dung Chu
  • Chih-Keng Chen
چکیده

This study proposes the design of an active stabilizing system (ASAS) for a single-track vehicle. Using the gyroscopic effects of two flywheels, this system can generate control torque to stabilize the vehicle in cases where there is centrifugal force of turning. To control the flywheel gimbals to generate stabilizing torque, a model predictive controller (MPC) is applied to control the system. For the controller design and performance evaluations, a model of a gyroscopic inverted pendulum is developed. Control strategies are proposed to stabilize the vehicle in the cases of straight running, circular motion, and path following. The results of the proposed stratgies when controlling the gyroscopic inverted pendulum showed good performance even with physical limitations of the control torques. In order to evaluate the real-time performance and the feasibility of the MPC, a real-time simulator is employed, which includes two embedded STM32F407 boards. The dynamic system and the control algorithms are respectively embedded into two STM32F407 boards for real-time simulation. Implementations of the MPC in this study demonstrate that the proposed controllers are feasible for real-time applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network NARMA Control of a Gyroscopic Inverted Pendulum

The objective herein is to demonstrate the feasibility of a real-time digital control of an inverted pendulum for modeling and control, with emphasis on nonlinear auto regressive moving average based neural network (NARMA). The plant of interest is a novel Gyroscopic Inverted Pendulum (GIP) device that is nonlinear and open-loop unstable. The GIP balances a pendulum on its free knife-edge base ...

متن کامل

Global Stabilization of the Inverted Pendulum Using Model Predictive Control

Model Predictive Control (MPC) is used to improve the performance of energy control for swinging up a pendulum. A new MPC method is developed in continuous time, but it explicitly considers its digital implementation letting the control signal be piecewise constant. The stability properties of the algorithm are analyzed in terms of the free MPC design parameters. The achieved performance improv...

متن کامل

MINIMUM TIME SWING UP AND STABILIZATION OF ROTARY INVERTED PENDULUM USING PULSE STEP CONTROL

This paper proposes an approach for the minimum time swing upof a rotary inverted pendulum. Our rotary inverted pendulum is supported bya pivot arm. The pivot arm rotates in a horizontal plane by means of a servomotor. The opposite end of the arm is instrumented with a joint whose axisis along the radial direction of the motor. A pendulum is suspended at thejoint. The task is to design a contro...

متن کامل

Nonlinear Model Predictive Control for the Swing-up of a Rotary Inverted Pendulum

This paper presents the experimental implementation of a gradient-based nonlinear model predictive control (NMPC) algorithm to the swing-up control of a rotary inverted pendulum. The key attribute of the NMPC algorithm used here is that it only seeks to reduce the error at the end of the prediction horizon rather than finding the optimal solution. This reduces the computation load and allows re...

متن کامل

Model Predictive Control and Stability Analysis of a Standing Biped with Toe-Joint

In this paper standing balance control of a biped with toe-joint is presented. The model consists of an inverted pendulum as the upper body and the foot contains toe-joint. The biped is actuated by two torques at ankle-joint and toe-joint to regulate the upper body in upright position. To model the interaction between foot and the ground, configuration constraints are defined and utilized. To s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017