Suppression of pancreatic tumor growth by targeted arsenic delivery with anti-CD44v6 single chain antibody conjugated nanoparticles.

نویسندگان

  • Chenchen Qian
  • Yong Wang
  • Yinting Chen
  • Linjuan Zeng
  • Qiubo Zhang
  • Xintao Shuai
  • Kaihong Huang
چکیده

Arsenic trioxide (As2O3) is a promising anticancer agent for solid tumors. However, the high toxicity to normal tissues resulting from the lack of tumor specificity remains a huge challenge in its systemic application. Targeted vectors enabling drug delivery to specific cancer cells bring about great potential for better therapeutic efficacy whereas low side effects in cancer treatments. Our previous work has demonstrated that the anti-CD44v6 single chain variable fragment (scFv(CD44v6)) screened out from the human phage-displayed scFv library possesses high specificity and affinity to membrane antigen CD44v6 over-expressing in a subset of epithelium-derived cancers, such as pancreatic, hepatocellular, colorectal and gastric cancers. Herein, a maleimide-functionalized amphiphilic diblock copolymer of poly (ethylene glycol) and poly (D, L-lactide) (mal-PEG-PDLLA) was synthesized and assembled to vesicles with arsenite ion (As) encapsulated in their cores (As-NPs). Conjugation of scFv(CD44v6) with mal-PEG-PDLLA (scFv-As-NPs) enabled more efficient delivery of As and exhibited higher cytotoxic activity than non-targeted ones (As-NPs) in human pancreatic cancer cells PANC-1. Furthermore, the targeted delivery of As induced more significant gene suppression in terms of the expression of anti-apoptotic Bcl-2 protein. Consequently, the expression level of cleaved caspase-3 which is a molecular indicator of cell apoptosis was remarkably elevated. In animal tests, scFv-As-NPs were found to greatly increase accumulation of drug in tumor site and potentiate the efficacy of As in inhibiting tumor growth owing to the enhanced cell apoptosis. These results imply that our tumor specific nanocarriers provide a highly efficient and safe platform for pancreatic cancer therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co‐delivery of microRNA‐21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapy

Tumor metastasis occurs naturally in pancreatic cancer, and the efficacy of chemotherapy is usually poor. Precision medicine, combining downregulation of target genes with chemotherapy drugs, is expected to improve therapeutic effects. Therefore, we developed a combined therapy of microRNA-21 antisense oligonucleotides (ASO-miR-21) and gemcitabine (Gem) using a targeted co-delivery nanoparticle...

متن کامل

Development of peptide conjugated Superparamagnetic Iron Oxide (SPIO) Nanoparticles for Targeted MR Imaging and Therapy of Pancreatic Cancer

Development of multifunctional nanoparticles that selectively target to human tumors for in vivo tumor imaging as well as inhibition of tumor growth holds a great promise for improving survival rate of cancer patients. In this study, we have engineered peptide conjugated superparamagnetic iron oxide (SPIO) nanoparticles targeting to urokinase plasminogen activator receptor (uPAR) or a single ch...

متن کامل

Production and Evaluation of Specific Single-Chain Antibodies against CTLA-4 for Cancer-Targeted Therapy

Background:  Cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) molecules are expressed on T-cells and inhibit their function by inhibiting activation of subsequent T-cell molecular pathways. Blocking of CTLA-4 inhibits the growth of malignant tumor cells. Anti-CTLA-4 monoclonal antibodies activate the immune system against cancer. Due to several advantages of single-chain antibodi...

متن کامل

Formulation of temozolomide by folic acid-conjugated tri-block copolymer nanoparticles for targeted drug delivery

Introduction: Glioblastoma multiforme (GBM) is the most frequent primary malignant tumor of the brain. But, the treatment of GBM is one of the most problems in cancer therapy because of poor drug penetration across the blood-brain barrier (BBB). Targeting drug delivery system and conjugating targeting moieties was recognized to overcome the poor penetration of chemotherapy drug...

متن کامل

An engineered anti-CA19-9 cys-diabody for positron emission tomography imaging of pancreatic cancer and targeting of polymerized liposomal nanoparticles.

BACKGROUND Antibody-based therapeutics is a rapidly growing field. Small engineered antibody fragments demonstrate similar antigen affinity compared with the parental antibody but have a shorter serum half-life and possess the ability to be conjugated to nanoparticles. The goal of this study was to engineer an anti-carbohydrate antigen 19-9 (CA19-9) cys-diabody fragment in hopes of targeting na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomaterials

دوره 34 26  شماره 

صفحات  -

تاریخ انتشار 2013