Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker.
نویسندگان
چکیده
1. We have studied the sensitivity of macaque retinal ganglion cells to sinusoidal flicker. Contrast thresholds were compared for stimuli which alternated only in luminance ('luminance flicker') or chromaticity ('chromatic flicker'), or which modulated only the middle- or long-wavelength-sensitive cones ('silent substitution'). 2. For luminance flicker, the lowest thresholds were those of phasic, non-opponent ganglion cells. Sensitivity was maximal near 10 Hz. 3. Tonic, cone-opponent ganglion cells were relatively insensitive to luminance flicker, especially at low temporal frequencies, but were sensitive to chromatic flicker, thresholds changing little from 1 to 20 Hz. Those with antagonistic input from middle- and long-wavelength-sensitive (M- and L-) cones had a low threshold to chromatic flicker between red and green lights. Those with input from short-wavelength-sensitive (S-) cones had a low threshold to chromatic flicker between blue and green. Expressed in terms of cone contrast, the S-cone inputs to blue on-centre cells had higher thresholds than M- and L-cone inputs to other cell types. 4. Phasic, non-opponent cells responded to high-contrast red-green chromatic flicker at twice the flicker frequency. This frequency-doubled response is due to a non-linearity of summation of M- and L-cone mechanisms. It was only apparent at cone contrasts which were above threshold for most tonic cells. 5. M- or L-cones were stimulated selectively using silent substitution. Thresholds of M- and L-cone inputs to both red and green on-centre cells were similar. This implies that these cells' sensitivity to chromatic flicker is derived in equal measure from centre and surround. Thresholds of the isolated cone inputs could be used to predict sensitivity to chromatic flicker. The high threshold of these cells to achromatic contrast is thus, at least in part, due to mutual cancellation by opponent inputs rather than intrinsically low sensitivity. 6. Thresholds of M- and L-cone inputs to phasic cells were similar at 10 Hz, and were comparable to those of tonic cells, suggesting that at 1400 td cone inputs to both cell groups are of similar strength. 7. The modulation transfer function of phasic cells to luminance flicker was similar to the detection sensitivity curve of human observers who viewed the same stimulus. For chromatic flicker, at low temporal frequencies thresholds of tonic cells (red or green on-centre cells in the case of red-green flicker or blue on-centre cells in the case of blue-green flicker) approached that of human observers. We propose the different cell types are the substrate of different channels which have been postulated on the basis of psychophysical experiments. 8. At frequencies of chromatic flicker above 2 Hz, human sensitivity falls off steeply whereas tonic cell sensitivity remained the same or increased. This implies that high-frequency signals in the chromatic, tonic cell pathway are not available to the central pathway respons
منابع مشابه
Amplitude and phase of responses of macaque retinal ganglion cells to flickering stimuli.
1. We have measured responses of macaque retinal ganglion cells to a uniform flickering field, with variation in luminance, chromaticity or both (heterochromatic flicker). 2. With heterochromatic flicker, as the luminance ratio of the flicker components was varied, phasic ganglion cell activity went through a minimum and an abrupt phase change close to equal luminance. Tonic ganglion cell respo...
متن کاملLuminance and chromatic modulation sensitivity of macaque ganglion cells and human observers.
We measured the sensitivity of macaque ganglion cells to luminance and chromatic sinusoidal modulation. Phasic ganglion cells of the magnocellular pathway (M-pathway) were the more sensitive to luminance modulation, and tonic ganglion cells of the parvocellular pathway (P-pathway) were more sensitive to chromatic modulation. With decreasing retinal illuminance, phasic ganglion cells' temporal s...
متن کاملPsychophysical and physiological responses to gratings with luminance and chromatic components of different spatial frequencies.
Gratings that contain luminance and chromatic components of different spatial frequencies were used to study the segregation of signals in luminance and chromatic pathways. Psychophysical detection and discrimination thresholds to these compound gratings, with luminance and chromatic components of the one either half or double the spatial frequency of the other, were measured in human observers...
متن کاملResponses to pulses and sinusoids in macaque ganglion cells.
The goal of the study was to compare pulse responses with sinusoidal temporal responsivity. The response of macaque ganglion cells was measured to brief luminance and chromatic pulses and to luminance or chromatic sinusoidal modulation. To make both positive and negative lobes of the pulse response visible, responses to pulses of opposite polarity were combined to yield a linearized pulse respo...
متن کاملThe temporal properties of the response of macaque ganglion cells and central mechanisms of flicker detection.
This analysis assesses sensitivity of primate ganglion cells to sinusoidal modulation as a function of temporal frequency, based on the structure of their impulse trains; sensitivity to luminance and chromatic modulation was compared to human psychophysical sensitivity to similar stimuli. Each stimulus cycle was Fourier analyzed, and response amplitudes subjected to neurometric analysis; this a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of physiology
دوره 414 شماره
صفحات -
تاریخ انتشار 1989